Polynomial SATSolver

Usage Instructions
and further Information

by Matthias Mueller (a.k.a. Louis Coder)
louis@louis-coder.com
Instructions Version 1.0 - November 24, 2013

1 Introduction
1.1 What is this Document about?

This is the usage manual that gives informationuabbmw to use the 'Polynomial SAT-Solver' by Madthi
Mueller. The 'Polynomial SAT-Solver' applicationaswindows program that implements the polynomial S
solving algorithm (which was also invented by M&thMueller). This polynomial algorithm itself ig@ained in
an extra document - this here tells only how to thee solver demo program. You can download theesplv
instructions and algorithm explanation from:

http://www.louis-coder.com/Polynomial_3-SAT_SohRwlynomial_3-SAT_Solver.zip

1.2 Requirements of the Reader

The Polynomial SAT-Solver Usage Manual, as wellressolver and its algorithm, should be of useamputer
scientists and mathematicians who are familiar wite P-NP-problem. | assume that the reader hag som
experience in theoretical computer science, ingig#indows programs and in programming.

2 The Solver Application

When you run the solver program (in the followingoacalled 'solver application' or 'solver app')¢ansole
window will open that looks similar to the followgrone (in the screenshot, you see the solver’s maim):

.
BN d:\sat\version 12.1 - misc new trials\63 - 2-sat-like tupels\2013-10-28-04 - (2013-10-27-04) error fix... | e S

POLYNOMIAL ERACT-2-3-5AT SOLVER DEMO vi.A

from: www.lowis—coder.com
Please read documentation for details.

THREE-S5AT: UYorks as 3-5AT solver.
Press ‘s' to switch to 2-5AT.

Pleaze select testing mode <checks if polynomial = exponential wesulth:

test random CHFs
test CHF from file
test random CHFs with each clauwuse additionally negated

test pigeon hole problem n=2, converted to pure I-5AT
test pigeon hole problem n=3, converted to pure J-S5AT

1:

2=

3:

g: test complete CHF

[

7: test all CMFs possihle

e: exit

Juzt hit Enter to »pun standard test
Crandom CHFsz, DigitHumber=%, ClauseHumber = 4%, 16060000008 test runs?

2.1 What does the Solver Application do?

The solver solves exact 2- or 3-SAT-formulas withthba time-exponential, fail-safe method (tryingt @i
possible solutions, known as "brute-force") andalgerithm that is supposed to solve the Satidftgiti*roblem in
polynomial time and space. To solve' means ouifptlie SAT-formula is satisfiable or not. The potynial
algorithm does not find a concrete solution.

The solver is able to solve one CNF from a fildado up to 100 million test runs consecutively endby in each
test run the solver creates a random formula, soiv@nce by the exponential and once by the paiyab
algorithm and checks the two results for equalitiyey must always be equal. If they are not, ithhige that the
polynomial algorithm failed, because it is very noipable that the exponential solving worked fauByt |

strongly assume that the polynomial algorithm waidit return wrong results (at least it did not des thor ~1

million test runs).

2.2 Input the Solver shall process

As already mentioned, the solver processes SAT4dtasn which are mathematically called 'CNFs'. Ch#nds
for 'Conjunctive Normal Form', which is, in commiiterature, notated as follows (example):

CNF =(x, 0%, 0x,) 0, 0%, O%,)0(x Ox, Ox,)
The OR-ed 'Xx's are called literals, the AND-ed t&are called the clauses.
The task is to decide if there is a solution, if.& is possible to assign each literal a valudrak or false so that
the whole CNF formula becomes true. If there iolat®on, the CNF is "satisfiable" (or also callesblvable"),

otherwise it is "unsatisfiable" (or also called "BNT"). For the example CNF above, this is possibled a
concrete solution would be:

X, = true
X, = true
X, = true

because when we insert this into the CNF we get:
CNF = (true Otrue Otrue) O(true D false D false) O(false Otrue Otrue)

which can be evaluated to 'true'.

An (exact) 3-SAT CNF is a CNF with always exactiyee literals per clause, and an (exact) 2-SAT @Néne
with always exactly two literals per clause.

There were already algorithms existing that solvBAZ CNFs in polynomial time, e.g. by using a ladic
resolution. It is possible to use the resoluticsoadn 3-SAT CNFs, but the problem is that specF€& can be
constructed that lead to an exponential amounin@ tvhen being resolved. An example for such asotdishard
to solve’ 3-SAT CNFs is the such-called 'PigeoneéHBloblem'. Professor Haken proved in 1985 thatiwgen-
based solvers need exponential time for solvingel@nough pigeon hole problems [1]. Note that nuyrémt)
algorithm is not resolution based, so the expoaéldwer bound of resolution-based solvers doesappty to my
algorithm.

2.3 The 'ClauseLine' Notation

In documents, solver output and its source codesel a special self-invented notation for CNFs. Il itdthe
ClauseLine notation'.

Traditionally, a clause is written like this:

(% 0% 0%,
| would write that clause like this:
1-0-1

There's a maximal index of the literals in the CNig-s0lve. | call this maximal possible index thigilNumber.
The example above has DigitNumber = 5, as the bighdex of a literal is 5.

A mathematical clause can be converted to a Claneels follows:

1. Write DigitNumber minus signs, for example (Digitmber = 5):- - - - - . A minus sign at position p means
that the literal p is not existing in the clause.

2. Loop through the literals of the clause. Eacérdit has an index. If the literal is negated, wat® at the
location denominated by the literal index, if theral is not negated, place a 1 (in both casekcepthe
minus sign).

The whole CNF is written as a list of ClauseLinies, one ClauseLine after another, each in a sidgtaiment-

respectively console line. | decided to use theu§#ine notation as | find it is a much better si@ation of
clauses and CNFs than 'tons of' indexed x variables

2.4 Origin of the SAT-Formulas

The CNFs to be solved can come from:

a) A file in DIMACS format.

The DIMACS format description is viewable at:
http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SATisanat.ps.

Practically, the 'CNF from file' feature is not médo be used often. It is better to use the randommula
generator (see b)), unless you really have a @iteaining a CNF you need to test. But note thattiieer ignores
meta data in DIMACS files, the solver just readsciauses until the end of the file because thisdsier to
implement. | experienced people had problems asn#ta data did not match the actual content ofitheSome
other third-party solvers might process the meta,day solver does not, so there could possiblyifferent
results.

b) Created by the solver using a random generator.

Randomly created formulas can have different chiarstics:

b.1) Completely randomly created.
¢ Implemented like this:
* Randomly select two (2-SAT) or three (3-SAT) diéet literal indices.
* These become the indices of the literals.
* Randomly negate or not negate each of those indices

b.2) Completely randomly created, each clausersgated.
* Done like b.1, plus each clause negated.
e Three examples (clause + negated clause):

1-0-1 + 0-1-0
00-0- + 11-1-
-1-01 + -0-10

* If the desired clause count is not even, there tibglone non-negated clause in the created CNF.
* Tests showed that negating each clause leads taufas 'harder to solve’, i.e. produced more
wrong solver output in an early state of my solkevelopment.

b.3) CNF containing all possible clauses (alwaysatisfiable).
* The CNF consists of all thinkable clauses with {8«SAT) or three (3-SAT) literals.
* Example (2-SAT, DigitNumber = 3):

00-
01-
10-
11-
0-0
0-1
1-0
1-1
-00
-01
-10
-11

b.4) Test run with all thinkable formulas of a defdl size.
* The solver creates CNF consisting of all possibl®t combinations of the possible clauses.
e For 2-SAT, DigitNumber = 3, the possible clauses ar

00-
01-
10-
11-
0-0
0-1
1-0
1-1
-00
-01
-10
-11

So the first CNF will be:
00-

The second CNF will be:
01-

The third CNF will be:
00-
01-

The fourth CNF will be:
10-

and so on. Please view the code for implementatgtails.

3 Using the Solver
3.1 Resizing the Console Window

For the future use, it might be good to know thas ipossible to change the console's size byclefking on the
window frame and move the window border while hi¢dthe mouse button. You can durably re-size timsale

window by clicking on the icon in the left top cem In the menu that pops up, click on 'propetrtiéstlialog

opens that you can use to customize the consolgowinThe changes last until you change the solpetls (i.e. if
you move or rename the solver executable). Youatsmincrease the amount of buffered text, sepésties'. But
note that printing to the console and therewithtiime required for solving slows down if you uskgge console
text buffer and/or you enlarge the console wind@enerally, you can speed up printing/solving mamynulas by
minimizing the window, so that the OS doesn't nmeck-draw the console text permanently.

Also note that you can press the 'Pause’ key on k@yboard (on most keyboard layouts, at the regid of the

top-most key row) to interrupt the solver app. Brasy key once to continue. If you accidentally entite solver
ask 'abort? (y/n)', enter "n" and press Return once

3.2 Features accessible in the Main Menu

. o |
BB d\satiwersion 12.1 - misc new alow63 - 2-sat- ke tupele\2013-10-28-04 - (2013-10-27-04) error fic. L=nlo=ln| eS|

POLYHOMIAL ERACT-2.3-SAT SOLUVER DEMO vi.@
from: www.lowis—coder.com

Please read documentation for details.

THREE-SAT: UYorks as 3-5AT solver.
Press ‘s’ to switch to 2-5AT.

Pleaze select testing mode {(checks if polynomial = exponential result):

1: test random CHF=z

2: test CNF from file

3: test random CHFsz with each clauwuse additionally negated
4: test complete CHF

L: test pigeon hole problem n=2, converted to pure J-SAT
6: test pigeon hole prohlem n=3. converted to pure 3-5AT
7: test all CHFs possible

e: exit

Juzt hit Enter to run standard test
C(random CHFz, DigitNumbher=%7, ClauseMumber = 45, 100000HAA test runs?

L T B TEEa—— I 1
In the solver's main menu (see screenshot), yoeictar:

e "1"to"7": starts a test run.

e "1","3","4" and "7": the solver 'invents' one miore random CNF(s), see topic 2.4.

e "2": make the solver read a CNF from a file, alsntioned in topic 2.4.

e "B" or "6": solve a 'Pigeon Hole Problem' CNF. Tigeon hole problem is a class of CNFs that need
exponential time to be solved with resolution-baselers. The polynomial solver should process also
those formulas in polynomial time and space (whdbés). Note that a Pigeon Hole Problem needibéto
exact 3-SAT, but here it has been converted tadiyg some extra literals.

e "s" switches between 2- and 3-SAT mode. You canenthk solver solve 2-SAT formulas, which need
less space to be displayed as ClauseTable and @nFsasier to analyze for humans, or you use the 3-
SAT mode, which is more important, as for 3-SATréheere only exponential algorithms known.

* "e" exits (alternatively you can click on the rethdow close button in the top right corner).

* Return runs the standard test. The standard tesbé&an implemented to make the user able to geick q
impression of how the solver works. When runninggblver app the first time you can just press Retu

4 Instructions for a Sample Usage

Start the solver application.

In the main menu, enter "1" (always followed lstiRn) to begin a test run with randomly createdhidas.

The solver asks for the DigitNumber. This is bighest possible literal index. Enter "8". This meahat all

literals have an index from minimal 1 to maximal 8.

4. The solver asks for the ClauseNumber. This isetkect number of clauses (AND-terms) that eachhef t
randomly created CNFs has. Enter "40".

5. Now you are asked to enter the number of test. timeach test run, a random CNF is created atedevith
first the exponential, fail-safe algorithm and theith the polynomial one. The solver would stop algplay
an error message if the two results (exponentigifoonial) are not equal. But it is improbable thhis
happens (at least it did not happen for the latgsnillion tests | did).

6. Finally the solver wants to know if you want teeseach tested formula. If you agree ("y"), eachH-GHN

printed to the console in ClauseLine notation (egec 2.3). You might want to view the formulas ithgr the

first tests to get an idea of how they look liketér void their displaying as the displaying sladesvn the
solving.

whnN e

———— 3
BN d\sativersion 12.1 - misc new trials\63 - 2-sat-like tupels\2013-11-30-03 - (2013-11-28-02) final fin... E=Tren ™
e

POLYHOMIAL EXACT-2.3-SAT SOLUVER DEMO vi.@
from: www.lowis—coder.com

Pleaze read documentation for details.

THREE-SAT: Yorks as 3-5AT solver.
Press ‘s’ to switch to 2-5AT.

Pleaze select testing mode (checks if polynomial = exponential result):

test random CHFs=

test CHF from file

test random CHFsz with each clauwuse additionally negated
test complete CMHF

test pigeon hole probhlem n=2, converted to pure I-S5AT
test pigeon hole problem n=3, converted to pure I-5AT
test all CHFs possihle

= T LM e L [

exit

]
'

Juzt hit Enter to »pun standard test
C(random CHFz, DigitMumber=7, ClauseMumber = 45, 10A8AAAAA test runs>

The solver will create random CHFz which are solved hy
once the exponential *‘hrute—force’ algorithm and also hy
the polvnomial one. The results are checked for eguality.

polynomial solving has a complexity of 0(DigitHumber*1@>
and iz therefore not very fast on common PCs.

Motice: the solver tells only *if* the CHF is solvahle.
it does not find any explicit solution<s>.

Ea3
Ead
Ea3
Ead
% Tip: do not wuse a DigitHumber much greater than 18 as the
Ead
Ead
Ead
Ea3
Ead

R OK X K R E K K K

DigitNumher Ce.g. 8> 8
ClauseMumbe (e.g. 48>: 48
TestRunMumber <e.g. 10008A>: 18088
Show CHMFs? usn (e.g. n»: ng

[)

To abort a running testing, press "y" and then RetiNote that aborting could take some time to tr¢aloorting
does not work during actual solving but only befanel after).

5 Output while testing

— 3
BB d\sativersion 12.1 - misc new trials\63 - 2-sat-like tupels\2013-10-28-04 - (2013-10-27-04) error fix... E=aran x|
I e ———

TestRun #5
DigitHumber=7 x ClauzeMumber=45; TesztMode=3, TeszstRunNumber=10000000A,. 3-5AT

1} Using exponential algorithm to check for solvability...

(fail-safe? solution:
ARA1 ARAAA
(fail-safe? solution:

111811111
Exponential solution: solvahle t for surel
2» Using polynomial algorithm to check for solvability...

s Polynomial Complexity Info sessescsescscscsse
Complexityl =657
Complexity2=223841
Complexity3d=1250544H
ComplexityMaxExpected=3803464448
ComplexityMax=13895768
P. solver used 4% of expected maximal complexity

= Polynomial solution = solvahle (? to bhe verified> <2 sec.>

=» Polvnomial algorithm worked =2

[.]

* The beginning of each test run is marked by ther&&s line containing the current TestRun numben (the
example).

* Then comes information what CNF was tested: Digitidar (maximal possible literal index), number of
clauses, what kind of formula (‘TestMode', seea@), the total count of TestRuns to do and tmalrer of
used literals per clause (2-SAT/3-SAT). You careemtll this information when beginning a test rycle
(see topic 4).

* If you specified at the beginning of the test thati want to see the created CNFs, then you'd saghitnow
(not visible in the screenshot).

* First the solver checks if the CNF has a solutisimgi the exponential algorithm, which is practigdil-safe
but too slow for larger CNFs (with DigitNumber >5)2 The result is printed to the console ("solvalite
'there is any solution’, or "UNSAT" for ‘there is solution’).

e The same is done with the polynomial algorithm.

* The result of both algorithms is compared (you &th@lways see "=> Polynomial algorithm worked :)f),
there's a difference the solver would instantlypsiod display an error message.

* Additionally, in the asterisks box, there's infotina about the complexity, which is practically thember of
iterations in the inner-most loops the polynomigoathm uses. The listed percentage is (Compl&4aty *
100 / ComplexityMaxExpected).

6 Further Information
6.1 ClauseTable Test

For the following formulas:
2-SAT, DigitNumber = {4, 5 or 6}
...the polynomial solver does an additional hardezbClauseTable test. Please read the documernt thizoactual

polynomial algorithm for information about the 'G&eTable'. So there might actually be up to thréerdnt
solver algorithms working:

the exponential solver (function "CNF_Solve_Exgatnal()" in "Polynomial_3SAT_Solver.cpp"),
the polynomial solver (function "CNF_Solve_Polymal()" in "ActualSolver.h"),
possibly additionally the ClauseTable test (fiorct ClauseTableTest()" in "ActualSolver.h").

wnN e

6.2 Ingenious CNF Sizes

When you run the solver in 2-SAT mode, set the §#&lumber to twice the DigitNumber.

You can use DigitNumbers up to 25, the upper Digitier limit of the current solver implementation.
Generally 2-SAT formulas are solved more quickigril3-SAT ones.

In 3-SAT mode, set the ClauseNumber to around #n2&s the DigitNumber.

Note that solving 3-SAT CNFs with DigitNumber > tfight be slow, especially for CNFs that turn out as
solvable (the solver might seem to 'hang' for stme).

* The ratio DigitNumber/ClauseNumber determines #edéncy if more random CNFs will be satisfiable or
unsatisfiable. For the DigitNumber and ClauseNumimeentioned above, the ratio is around 1, as ¢destit
(equally many solvable/unsolvable ones). If you aseuch greater ClauseNumber than DigitNumber,geiu
more unsolvable ones.

Generally, you can make the solver (invent andi@se exact 2-SAT or exact 3-SAT formulas. It isongnt that
the solver can solve exact 3-SAT formulas, becéabseefore no polynomial algorithms had been exgstin
Furthermore the solver has also an exact 2-SAT nasd2-SAT formulas create a smaller ClauseTableaaed
easier to understand for humans. To put it in shelt, exact 3-SAT must work, exact 2-SAT is maianked to
visualize the algorithm and to make it better ustierdable.

7 Complexity of the Solver and practical Meawani

A detailed derivation of the exact complexity i®aim in the algorithm explanation.

You can easily see that the implementation of tigrpmial solver has a polynomial time-complexigchuse it
consists of nested loops only. There is no powtggtion and also no recursive procedure calling.

But unfortunately the solving speed of the polyransiolver is nevertheless not that high as thermotyal that
describes the (worst-case) runtime has a high de@®igitNumber~10), which is slow on normal P8sit high-
performance computers might solve even large fainmatances, while even those HP-PCs could noedalge
instances using the exponential algorithm (I assamexponential solver needs O(2"DigitNumber) time)

This fact could be described descriptively likesthi

e The polynomial solver needs 'medium’ (solving-)difar small CNFs and 'much’ time for large CNFs.
* An exponential solver needs ‘few' time for smallfSNand ‘incredibly much' time for large CNFs.

With 'small CNFs' | mean e.g. 10 different literalsd 50 clauses and ‘'large CNFs' could have e(litegals and
500 clauses. Look at the number of work (e.g. makloop-runs) the polynomial O(n~10) solver wohlalve to do
if n is the number of literals:

10”710
100”10

10000000000
100000000000000000000

The exponential algorithm would be faster for 16rhkls, but it is over twelve billion times slowfer 100 literals:

2710
272100

1024
1267650600228229401496703205376 (~12676506002 ti nes 100710)

This required-CPU-time difference gets larger arddr the more literals the CNFs to solve have.

So the polynomial algorithm should really be wortbyinstitutions that have a lot of calculatingyey, but as my
sample solver is meant to be executed on normal P@wits the DigitNumber (maximal literal indexd 25 and
the ClauseNumber to 18500. Above these limits yould/wait too long for an output.

8 What has been tested until now

As mentioned before, | had run over 1 million testseach of those tests the polynomial algorittetumed the
same as the exponential, fail-safe one.

Most formulas | tested were of the type
e 2-SAT, DigitNumber = 3 to 25, ClauseNumber ~= DO\gimber * 2,
e 3-SAT, DigitNumber = 3 to 15, ClauseNumber ~= DON\gimber * 5.

| also used the solver’s ‘Test all CNFs possibéatiire and tested
* all thinkable 2-SAT formulas with DigitNumber=4.

Finally,
* the solver successfully processed the ‘Pigeon Rotdlems’ (converted to exact 3-SAT) with n = 25 8,
which you can both re-test using the solver app.

Besides the mentioned ones, ten thousands formtilagious sizes have been tested.

9 Solver Source Code

| implemented the polynomial SAT solver as a corapptogram. You can download the C++ source codefzn
compiled Windows (native) binary. The binary shoulth on Windows XP, Vista, 7 and 8. It has been
successfully tested on Windows Vista and 7. At bgst open and edit (and compile) the source coille w
Microsoft Visual Studio 2005 or later.

If you do not have a Windows PC or/and Visual Stugiou can view the source code using any texoedis the
solver is not a .NET program, it can probably bepibed for Linux with some little code changes.

Please note that within the source code, ther@adot of annotations that give additional inforroatiabout the
implementation. | encourage you to have a lookeatcbde, especially if you are a computer scientist

10 If the Solver should fall

If the demo solver program should report an epptaase attend the following points:

* Make sure you ran the original, unchanged solvdryau used it according to the instructions.

e If the polynomial algorithm should really turn otat be faulty, it might not be completely uselesssgibly
some changes suffice to make the solver work gg@ixperienced this often during development).

* | created several different implementations, magbmore complicated one that hasn't yet been pwalish
might work.

* However, although | tested the algorithm intensivaaid tried to construct an algorithm that can fmven to
be correct, it could nevertheless be that the #hguris faulty.

e If you think you found an error, please mail melig@louis-coder.com. Thank you.

11 Advantages compared to common Algorithms

In the following | want to list some suppositionsiyvmy algorithms shall work better than exponengsisting
ones. The task shall be to solve exact 3-SAT foasul

My algorithm is better than ... because ...

Logical resolution: for exact 2-SAT CNFs, the resolution terminatdsrgbolynomially many steps. For exact-3-
SAT this is not guaranteed. For instance, whengu#iie resolution on large-enough pigeon hole problany
resolution-based solver will use exponentially matgps. Professor Haken proved this in 1985 [1¢ fEason for
the exponential complexity is, in my own words, fbkowing:

When resolving two exact 3-SAT clauses with eaditeBals, a resolved clause may be created tha# hisrals.
This 4-literal clause might, when being involvedfunther resolving steps, grow to a 5-literal cleussd so on.
This means that the number of (resolved) clausebitaus also the complexity, can grow heavily. dntcast, two
2-SAT clauses can only be resolved to another 2-8latise, the literal count will not grow as theotason
removes one literal per input clause and puts ¢lséng two or less literals in the resolved claldete that my
algorithm does not produce "inbetween-data" like tbsolution might create resolved clauses with,4 and
more literals. My algorithm will process each teplf possible clauses only once, by design. Thstopreis not if
my solver processes each triple only once but ig tne-time-treatment is sufficient. | suppose tias, as
millions of tests did not lead to any error andtiermore | suppose the induction proof confirmsdbeectness.
For the induction proof, please read the algorittxplanation (in the zip file downloadable from thd&RL
mentioned in topic 1.1).

Backtracking algorithms (e.g. DPLL): My algorithm does not use a binary search treeadsw no backtracking,
which might make an algorithm exponential. My altfon only uses triples created out of the possitdeses, of
which there are merely polynomially many ones.

Furthermore notice that my algorithm does not use:

* a pow() function to calculate loop iteration coynts

* it does never process a significantly large amofiaata multiple times,
* it does also not use exponential space (memory).

All those evidences and the tests and the proofsdaralgorithm explanation document make me beltbaé my

algorithm does really solve any exact 3-SAT formugpolynomial time. But it could nevertheless battthe
algorithm is incorrect. | ask the scientific comntyrio verify my algorithm, for what | would be wethankful.

12 Summary

This document should have given you more detaitddrination about what the polynomial solver applma
does and how to use it. For the explanation ofattteal polynomial SAT-solving algorithm, please adwad the
document 'Polynomial_3-SAT_Solver.pdf' from:

http://www.louis-coder.com/Polynomial 3-SAT Sohrolynomial 3-SAT Solver.pdf

13 References
13.1 General Literature

e Uwe Schéning, Theoretische Informatik - kurz gefaBghl. Institut Wissenschaftsverlag, 1992, ISBMAI1-
15641-4.

* Ingo Wegener, Theoretische Informatik - eine akponenorientierte Einfihrung (3. Auflage), B. G. Dear
Verlag / GWV Fachverlage GmbH, Wiesbaden 2005, 1SB3851-0033-5.

* Volker Heun, Grundlegende Algorithmen (2. AuflagEjiedr. Vieweg & Sohn Verlag / GWV Fachverlage
GmbH, Wiesbaden 2003, ISBN 3-528-13140-3.

* http://en.wikipedia.org/wiki/3-SAT (accessed 201B23).

13.2 Concrete References

* [1] http://www.ti.inf.ethz.ch/ew/courses/extremal@emy.pdf (accessed 2013-12-08).

