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Abstract

This article describes an algorithm that is capable of solving any instance of a 3-SAT CNF in maximal O(n18),
whereby n is the literal index range within the formula to solve. The algorithm has been tested at great length
in form of a C++ implementation whose download link is given. Under the supposition the algorithm is correct,
the P-NP-Problem would be solved with the result that the complexity classes NP and P are equal.

1 Introduction

The P-NP-Problem is one of the most important unsolved problems within its discipline, concerning both math-
ematicians as well as computer scientists. Easily spoken, the problem is to find out and prove if it is possible to
solve, within an affordable amount of time and space, any of the such-called ’NP-complete’ decision problems which
are categorized as belonging to the complexity class ’NP’.

’Affordable’ shall mean that the number of calculating steps required to solve any of those NP-complete problems
can be described by a polynomial with the input size of the problem ’n’ as base and some constant exponent ’c’.
The simplest example would be nc. Until now, for problems out of the class NP there are only algorithms known
whose complexity grows by a constant factor each time you increase the input size by one, so the constant is in
the base and the input size is in the exponent: cn [10]. The arising enormous computation effort entails that only
small-sized NP-problem instances can be handled by existing computers unless some polynomial processing method
is (ever) found.

The author of this article supposes the algorithm described in this document solves the NP-complete problem
’3-SAT’ in polynomial time and space, and thus would give the answer to the main question that NP-complete
problems can be solved easier than with an exponential amount of work.

This would imply that ”P = NP”, what means that algorithms belonging to the complexity class ’NP’ could be
solved also in polynomial time. That classified those algorithms as lying also completely in the complexity class ’P’
and therefore the two complexity classes are equal [4]. The effect would be that many planning tasks, for instance
in economy, could now practically be done at all or much more precisely, what had an enormous positive effect on
people’s life in general.
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2 History of Polynomial Algorithm

There are several different algorithms on the Internet that have been invented by me during the past ≈3 years.
What you are currently reading is my fourth attempt to build a polynomial 3-SAT solver. I have developed four
3-SAT solving algorithms which I call Algorithm A (published December 2012), Algorithm B (published December
2013), Algorithm C (put on-line May 2015) and the current major version from November 2015, named Algorithm D
(the updated versions D-1.1 and D-1.2, which explain the algorithm more clearly and more detailed, were published
in February 2016 and May 2016).

While Algorithm A and C turned out to be faulty, version B and D could not be falsified yet. With ’not falsified’ I
mean Algorithm B and D are of polynomial complexity for sure, as one can see from the way they are programmed,
i.e. the implementations consist of nested loops only and use no power-of-function(s) or recursive procedure calling,
and they never returned wrong results in over a million test runs. The problem about Algorithm B was that
its correctness could not (yet) be mathematically proven, and although it never returned wrong results, deeper
examination of its inner state showed unexpected behavior (see topic 4.5.2). For this reason I created Algorithm
C, which was a simplified version of version B. Unfortunately the simplifications applied to the code made it
incorrect, for specially constructed 3-SAT CNFs Algorithm C fails, what I unfortunately discovered not before it
was put online. Therefore I combined the main algorithm (2-dimension Boolean array, as we’ll see later on in this
document) of version B and added version C’s additional error testing and code parts that make the solver ’more
robust’. The result of this merging, Algorithm D, is described within the article you are currently reading.

You can view all four algorithms in ”pdf” format by visiting:

http://www.vixra.org/author/matthias mueller

You can also download the C++ implementations of Algorithms B and D, which do in each case consist of extensively
commented source code and a compiled binary for Windows and one for Linux within a ”zip” file. The download-
URL of that zip-file is:

http://www.louis-coder.com/Polynomial 3-SAT Solver/Polynomial 3-SAT Solver.zip

Finally there’s the Polynomial SAT Solver page on my private homepage. To view it, click on the following link:

http://www.louis-coder.com/Polynomial 3-SAT Solver/Polynomial 3-SAT Solver.htm

Please prefer downloading material related to Algorithm D (pdf, source code) from my website www.louis-
coder.com (see above) instead of from third-party sites, because from my site you easily can get the newest version,
which might have eventual errors corrected and might have been extended since the initial release.

3 3-SAT: The Problem to Solve

The task the algorithm explained in this document shall do is to decide if any given instance of a 3-SAT CNF has a
solution or not. ’3-SAT CNF’ is used here as an abbreviation that denotes an instance of a formula in conjunctive
normal form, whereby each conjunction (AND-ed term) consists of a disjunction (OR-term) of exactly 3 variables,
called ’literals’:

I =

a−1∧
i=0

(εi1xi1 ∨ εi2xi2 ∨ εi3xi3)

For all i = 0, ..., a− 1 the variables xi1, xi2, xi3 are pairwise distinct. If εij is placed before xij , it shall mean that
xij is negated. a is used in this document as the number of AND-ed terms. The literal index range, i.e. the greatest
index n of some literal xn shall later be used as measurement of the input size.
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Example: I = (x1 ∨ x3 ∨ ¬x5) ∧ (x2 ∨ x4 ∨ x5)

We identify a = 2, n = 5 as there are two AND-ed terms and the highest literal index is 5 (the lowest one possible
is always 1, for any instance used throughout this document). One solution, also called model in literature (see e.g.
[10]), for the sample instance could be x1 = true, x2 = true, or alternatively x5 = false, x4 = true, for instance.

It can happen that there is no solution at all that could make the whole CNF true, what is then to be found out
by the polynomial solver. If the CNF has no solution, we call it ’unsolvable’ or ’unsatisfiable’ (both expressions
are used synonymously). Otherwise, if the CNF has one or more solutions, we call it ’solvable’ or, interchangeably,
’satisfiable’.

One way to decide if the 3-SAT instance is solvable would be to try out all possible solutions. The matter with
this proceeding is that, if there is no solution at all, you had to test as many as 2n solutions to finally find out that
you cannot solve the CNF. Practical tests and theoretical considerations give reason to expect that the algorithm
described in this document can reliably determine the 3-SAT CNF’s solvability, even in the worst-case, after maximal
O(n18) loop runs, whereby the practical complexity is for most CNFs considerably smaller.

As a last point I want to thank Mr. Mihai Prunescu, whose paper [8] gave me inspiration how to denote parts of
this topic.

4 Main Algorithm

To explain how the polynomial solving algorithm works, first a set of expressions and conventions will be declared.
After that, the actual algorithm will be introduced.

4.1 General Definitions

The following definitions are crucial for the understanding of the algorithm. You will notice that I continuously
capitalize many of them. This shall express the definitions are important and (some of them) can be seen as proper
names exclusively used in this document and not in classic literature.

Definition 4.1.1 The expression CNF does consistently stand, within this document, for the 3-SAT CNF that is
to be solved by the polynomial solver, as explained in the previous topic. As already mentioned, n is the literal index
range of the CNF, i.e. the number of different literal indices. n will later be seen as the polynomial solver’s input
size for the definition of the algorithm’s complexity.

Definition 4.1.2 The Clause Line Notation of a clause shall be a word consisting of n chars, whereby each char
can be chosen out of {0,1,-}. For 3-SAT, any Clause Line contains exactly 3 ’0’ or/and 1 ’1’ chars and exactly
(n− 3) ’-’ chars.

A classical, mathematical clause known from general literature can be converted into a Clause Line as follows: The
Clause Line is initially a string {-}n. Then we regard the three literals of the mathematic clause one after another.
If a literal is negated, place ’0’ at the location 2 within the Clause Line indicated by the literal index (the initial ’-’
chars are overridden). If the literal of the mathematical clause is not negated, act equally but place a ’1’.

Example for n = 5:
(x1 ∨ x3 ∨ ¬x5) = 1-1-0

(x2 ∨ ¬x4 ∨ ¬x5) = -1-00

1In this document, ”or/and” does always mean that both ”or” as well as ”and” is applicable. In particular, ”or/and” has nothing
to do with the exclusive or.

2The x-th location within a clause in Clause Line Notation is always defined as the x-th char from left.
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A CNF is, within this document and related program code, noted in Clause Line Notation. I decided to do this to
get a more characteristic visualization that shall be easier to understand than similar-looking, indexed ’x’-literals.
Please notice that in the solver code (implementation) n is called DigitNumber, as n defines the number of
digits/chars a Clause Line consists of. The chars of a Clause Line are, within the solver code, called ’digits’ to avoid
exchanging the C++ variable type named ’char’ with the Clause Line chars. However, in the running text of this
document the expressions ’char(s)’ and ’digit(s)’ will be used synonymously.

Definition 4.1.3 Two clauses C1 and C2 are said to be in conflict if C1 has a 0 at a position where C2 has a 1,
or vice versa. C1 containing ’-’ at a location where C2 has 0 or 1, or vice versa, does not yet mean C1 and C2 are
in conflict. We use the notation C1 6≡ C2 to express C1 and C2 are in conflict, and we use the notation C1 ≡ C2

to express C1 and C2 are not in conflict.

Mathematically we can describe ’two clauses J and K are in conflict’ as follows: Let cx be the x-th digit within an
s-SAT clause C that is given in Clause Line Notation, what means that cx ∈ {0,1,-} with 1 ≤ x ≤ n and s ≥ 3, n
is the highest literal index in the SAT CNF to solve. Two clauses J and K, whose digits are accessible via jx and
kx, are in conflict (J 6≡ K) if ∃x | (jx = 0 ∧ kx = 1) ∨ (jx = 1 ∧ kx = 0).

Definition 4.1.4 We define the linguistic expression ’all 0/1 digits of C appear in J or/and K’ mathematically
as follows:

The basic assumptions are: We regard some clause C, which is an s-SAT clause in Clause Line Notation, s ≥ 3.
When C is given in Clause Line Notation, then C is a string of n chars (synonymously called digits) ∈ {0,1,-},
whereby n is the highest literal index in the SAT CNF to solve. Each of the n digits of C shall be accessible via
cx, 1 ≤ x ≤ n. The analogous applies to two further clauses J (digits accessible via jx) and K (digits accessible via
kx). C, J and K must not be in conflict pair-wise (C ≡ J , C ≡ K, J ≡ K).

Finally we define ’all 0/1 digits of C appear in J or/and K’ as follows:

∀x ∈ {1, 2, ..., n} : (cx = -) ∨ (cx = jx) ∨ (cx = kx)

This means that any digit of C is either ’-’, or it is ’0’ or ’1’ and then equal to the digit(s) at the same location
(digit index) x within J , or K, or both.

Definition 4.1.5 We define the linguistic expression ’a digit of C appears outside J and K, at position p’
mathematically as follows:

The basic assumptions as in the previous definition (4.1.4) are taken as granted.

If a digit cp appears ’outside’ J and K, then:

((cp = 0) ∨ (cp = 1)) ∧ (jp = -) ∧ (kp = -)

Definition 4.1.6 A Possible Solution S of the CNF shall be a word consisting of exactly n 0 or/and 1 chars,
but no ’-’ chars. There are exactly 2n Possible Solutions.

Definition 4.1.7 The Clause Type of any clause informs about the positions where, within the clause, the 0

or/and 1 chars are located. For 3-SAT, there are
(
n
3

)
many different Clause Types. If wanting to distinguish

between different Clause Types, the 0/1 chars can be replaced by ’x’, for notation purposes.
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Example:
ClauseLine ClauseType

0-0-0 x-x-x

10-0- xx-x-

Definition 4.1.8 There are, for 3-SAT, 23 possibilities to replace the ’x’ chars of a Clause Type by 0/1 chars,
e.g. xxx => 000, 001, 010, 011, 100, 101, 110, 111. After replacing the ’x’ chars of a Clause Type with 0

or/and 1 chars, the result is to be called Filled Clause Type(s).

Definition 4.1.9 Let the Possible Clauses, abbreviated ’PC(s)’, be the set of all 23×
(
n
3

)
3-SAT clauses that can

be built at all. The Possible Clause Number is the size of that set, as just calculated. There is a special order of
the clauses in the set, in such a way that all 23 = 8 Filled Clause Types for a Clause Type do appear in a succession
within the set of Possible Clauses.

Example: Possible Clauses = {000-, 001-, 010-, 011-, 100-, 101-, 110-, 111-, 00-0, 00-1, 01-0, ..., -111}

Definition 4.1.10 We say a Possible Solution S ’satisfies’ a Possible Clause C if S has at least one 0 or 1 at the
same position as within C. Mathematically: ∃x ∈ {1, 2, ..., n} | sx = cx. Example: S =000000 satisfies C =1-01--

as both have a 0 at 3rd position.

Proof: Char si is, for any i ∈ {1, 2, ..., n}, either 0 or 1. Those two states do, as defined in definition 4.1.2, mean
either false (0) or true (1). The same applies to any clause in Clause Line Notation, whereby clauses might contain
also ’-’ chars. But ’-’ chars can, in what concerns the satisfaction test, be ignored because a ’-’ char at position i
within C means that the literal i did not exist in the original, mathematical clause notation and thus doesn’t decide
if the clause is satisfied or not. So si = ci = {0, 1} states C as satisfied, because it corresponds to the mathematical
notation si = ci = {false, true}.

Observation 4.1.11 It is not possible to satisfy all 23 = 8 Filled Clause Types with one Possible Solution.

Proof: This can easily be shown by trying out to satisfy e.g. 000, 001, 010, 011, 100, 101, 110, 111 – it
won’t work. Eventual ’-’ chars within the Filled Clause Types (e.g. 0-0-0, 0-0-1, 0-1-0, 0-1-1, 1-0-0, ...)
do not affect this impossibility. On the other hand, 7 or less Filled Clause Types can be satisfied with some Possible
Solution, as can be tried out as well.

Definition 4.1.12 When referring to one or more Possible Clauses, we use capital letters to indicate
clause strings (C ∈ {0,1,-}n). Possible Clause indices are expressed by non-capital letters (c ∈
{0, 1, ..., PossibleClauseNumber − 1}). Clause indices are mostly used as for-loop-variables, pointing to an ele-
ment out of the set of Possible Clauses.
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Definition 4.1.13

• The Clause Table, abbreviated ’CT’, is a formula in disjunctive normal form.

• Every Clause Table has 2n OR-ed terms and
(
n
3

)
AND-ed Possible Clauses within each OR-term. n is the

literal index range of the corresponding SAT CNF.

• The j-th OR-ed term of the CT shall be called the j-th CT Line. The accumulated set of all i-th Possible
Clauses out of the AND-terms shall be called the i-th CT Column.

• Each column of the CT comprises the same Clause Type, but not necessarily the same clauses.

• The clauses in each CT Line are all pair-wise not in conflict.

• Each CT Line has an associated {0,1}n string called Underlying Solution and comprises all clauses that
are not in conflict with that Underlying Solution. Each of the 2n Underlying Solutions contributes one CT
Line with all clauses not in conflict to that Underlying Solution.

• The clauses within the CT can be seen as Boolean variables that are, to evaluate the CT, replaced by either
true or false. A clause within the CT is replaced by true if it is not existing in the SAT CNF to solve. If a
clause exists in the SAT CNF, it is, within the CT, replaced by false.

• If the whole CT DNF evaluates to false, the corresponding SAT CNF is not solvable. If the whole CT DNF
evaluates to true, the corresponding SAT CNF has some solution(s). This will be shown in the upcoming
observation 4.1.14. The Clause Table is only used to determine if the SAT CNF is solvable, it is not used to
output any concrete solution. (An algorithm which takes a 3-SAT CNF and determines reliably solvable/not
solvable is sufficient to satisfy the scope of the Satisfiability Problem, as mentioned in e.g. [10].)

Example: The following DNF forms the Clause Table for 3-SAT, n = 4:

(000- ∧ 00-0 ∧ 0-00 ∧ -000)∨
(000- ∧ 00-1 ∧ 0-01 ∧ -001)∨
(001- ∧ 00-0 ∧ 0-10 ∧ -010)∨
(001- ∧ 00-1 ∧ 0-11 ∧ -011)∨
(010- ∧ 01-0 ∧ 0-00 ∧ -100)∨
(010- ∧ 01-1 ∧ 0-01 ∧ -101)∨
(011- ∧ 01-0 ∧ 0-10 ∧ -110)∨
(011- ∧ 01-1 ∧ 0-11 ∧ -111)∨
(100- ∧ 10-0 ∧ 1-00 ∧ -000)∨
(100- ∧ 10-1 ∧ 1-01 ∧ -001)∨
(101- ∧ 10-0 ∧ 1-10 ∧ -010)∨
(101- ∧ 10-1 ∧ 1-11 ∧ -011)∨
(110- ∧ 11-0 ∧ 1-00 ∧ -100)∨
(110- ∧ 11-1 ∧ 1-01 ∧ -101)∨
(111- ∧ 11-0 ∧ 1-10 ∧ -110)∨
(111- ∧ 11-1 ∧ 1-11 ∧ -111)

We can identify
(
4
3

)
= 4 CT Columns and 24 = 16 CT Lines. The Underlying Solutions are 0000 for the first CT

Line, 0001 for the second one, 0010 for the third one, 0011 for the fourth one, 0100 for the fifth one and so on.

6



To make you understand the construction of the Clause Table better, another example for n = 5:

(000-- ∧ 00-0- ∧ 00--0 ∧ 0-00- ∧ 0-0-0 ∧ 0--00 ∧ -000- ∧ -00-0 ∧ -0-00 ∧ --000)∨
(000-- ∧ 00-0- ∧ 00--1 ∧ 0-00- ∧ 0-0-1 ∧ 0--01 ∧ -000- ∧ -00-1 ∧ -0-01 ∧ --001)∨
(000-- ∧ 00-1- ∧ 00--0 ∧ 0-01- ∧ 0-0-0 ∧ 0--10 ∧ -001- ∧ -00-0 ∧ -0-10 ∧ --010)∨
(000-- ∧ 00-1- ∧ 00--1 ∧ 0-01- ∧ 0-0-1 ∧ 0--11 ∧ -001- ∧ -00-1 ∧ -0-11 ∧ --011)∨
(001-- ∧ 00-0- ∧ 00--0 ∧ 0-10- ∧ 0-1-0 ∧ 0--00 ∧ -010- ∧ -01-0 ∧ -0-00 ∧ --100)∨
(001-- ∧ 00-0- ∧ 00--1 ∧ 0-10- ∧ 0-1-1 ∧ 0--01 ∧ -010- ∧ -01-1 ∧ -0-01 ∧ --101)∨
(001-- ∧ 00-1- ∧ 00--0 ∧ 0-11- ∧ 0-1-0 ∧ 0--10 ∧ -011- ∧ -01-0 ∧ -0-10 ∧ --110)∨
(001-- ∧ 00-1- ∧ 00--1 ∧ 0-11- ∧ 0-1-1 ∧ 0--11 ∧ -011- ∧ -01-1 ∧ -0-11 ∧ --111)∨
(010-- ∧ 01-0- ∧ 01--0 ∧ 0-00- ∧ 0-0-0 ∧ 0--00 ∧ -100- ∧ -10-0 ∧ -1-00 ∧ --000)∨
(010-- ∧ 01-0- ∧ 01--1 ∧ 0-00- ∧ 0-0-1 ∧ 0--01 ∧ -100- ∧ -10-1 ∧ -1-01 ∧ --001)∨
(010-- ∧ 01-1- ∧ 01--0 ∧ 0-01- ∧ 0-0-0 ∧ 0--10 ∧ -101- ∧ -10-0 ∧ -1-10 ∧ --010)∨
(010-- ∧ 01-1- ∧ 01--1 ∧ 0-01- ∧ 0-0-1 ∧ 0--11 ∧ -101- ∧ -10-1 ∧ -1-11 ∧ --011)∨
(011-- ∧ 01-0- ∧ 01--0 ∧ 0-10- ∧ 0-1-0 ∧ 0--00 ∧ -110- ∧ -11-0 ∧ -1-00 ∧ --100)∨
(011-- ∧ 01-0- ∧ 01--1 ∧ 0-10- ∧ 0-1-1 ∧ 0--01 ∧ -110- ∧ -11-1 ∧ -1-01 ∧ --101)∨
(011-- ∧ 01-1- ∧ 01--0 ∧ 0-11- ∧ 0-1-0 ∧ 0--10 ∧ -111- ∧ -11-0 ∧ -1-10 ∧ --110)∨
(011-- ∧ 01-1- ∧ 01--1 ∧ 0-11- ∧ 0-1-1 ∧ 0--11 ∧ -111- ∧ -11-1 ∧ -1-11 ∧ --111)∨
(100-- ∧ 10-0- ∧ 10--0 ∧ 1-00- ∧ 1-0-0 ∧ 1--00 ∧ -000- ∧ -00-0 ∧ -0-00 ∧ --000)∨
(100-- ∧ 10-0- ∧ 10--1 ∧ 1-00- ∧ 1-0-1 ∧ 1--01 ∧ -000- ∧ -00-1 ∧ -0-01 ∧ --001)∨
(100-- ∧ 10-1- ∧ 10--0 ∧ 1-01- ∧ 1-0-0 ∧ 1--10 ∧ -001- ∧ -00-0 ∧ -0-10 ∧ --010)∨
(100-- ∧ 10-1- ∧ 10--1 ∧ 1-01- ∧ 1-0-1 ∧ 1--11 ∧ -001- ∧ -00-1 ∧ -0-11 ∧ --011)∨
(101-- ∧ 10-0- ∧ 10--0 ∧ 1-10- ∧ 1-1-0 ∧ 1--00 ∧ -010- ∧ -01-0 ∧ -0-00 ∧ --100)∨
(101-- ∧ 10-0- ∧ 10--1 ∧ 1-10- ∧ 1-1-1 ∧ 1--01 ∧ -010- ∧ -01-1 ∧ -0-01 ∧ --101)∨
(101-- ∧ 10-1- ∧ 10--0 ∧ 1-11- ∧ 1-1-0 ∧ 1--10 ∧ -011- ∧ -01-0 ∧ -0-10 ∧ --110)∨
(101-- ∧ 10-1- ∧ 10--1 ∧ 1-11- ∧ 1-1-1 ∧ 1--11 ∧ -011- ∧ -01-1 ∧ -0-11 ∧ --111)∨
(110-- ∧ 11-0- ∧ 11--0 ∧ 1-00- ∧ 1-0-0 ∧ 1--00 ∧ -100- ∧ -10-0 ∧ -1-00 ∧ --000)∨
(110-- ∧ 11-0- ∧ 11--1 ∧ 1-00- ∧ 1-0-1 ∧ 1--01 ∧ -100- ∧ -10-1 ∧ -1-01 ∧ --001)∨
(110-- ∧ 11-1- ∧ 11--0 ∧ 1-01- ∧ 1-0-0 ∧ 1--10 ∧ -101- ∧ -10-0 ∧ -1-10 ∧ --010)∨
(110-- ∧ 11-1- ∧ 11--1 ∧ 1-01- ∧ 1-0-1 ∧ 1--11 ∧ -101- ∧ -10-1 ∧ -1-11 ∧ --011)∨
(111-- ∧ 11-0- ∧ 11--0 ∧ 1-10- ∧ 1-1-0 ∧ 1--00 ∧ -110- ∧ -11-0 ∧ -1-00 ∧ --100)∨
(111-- ∧ 11-0- ∧ 11--1 ∧ 1-10- ∧ 1-1-1 ∧ 1--01 ∧ -110- ∧ -11-1 ∧ -1-01 ∧ --101)∨
(111-- ∧ 11-1- ∧ 11--0 ∧ 1-11- ∧ 1-1-0 ∧ 1--10 ∧ -111- ∧ -11-0 ∧ -1-10 ∧ --110)∨
(111-- ∧ 11-1- ∧ 11--1 ∧ 1-11- ∧ 1-1-1 ∧ 1--11 ∧ -111- ∧ -11-1 ∧ -1-11 ∧ --111)

The order of the CT Columns and CT Lines can be chosen arbitrarily. In my solver implementation I use a kind
of lexicographical order. But: If you wanted to change the CT Column order, you would have to exchange whole
columns of course, and not just single clauses. This applies to exchanging CT Lines as well.

Observation 4.1.14 A SAT CNF is solvable if, and only if, all Possible Clauses of at least one CT Line are all
absent from the CNF to solve, i.e. those PCs do not appear in the CNF. For instance, a 3-SAT CNF for n = 4
would have a solution if at least 011-, 01-1, 0-11, -111 would not appear in that CNF 3.

Proof: If the SAT CNF is solvable, then there’s at least one solution S ∈ {0,1}n which satisfies all clauses of the
CNF (please recall definitions 4.1.6 and 4.1.10). This means: let cx with x ∈ {1, 2, .., n} and ∀x : cx ∈ {0,1,-} be
the digits of any clause C from the SAT CNF. If a solution S satisfies C then: ∃x|cx = sx. This means that each
of the clauses of the SAT CNF has at least one 0 or 1 char which appears at the same location within S. We know
that because the just made statement is an alternative description for the situation where a model satisfies at least
one literal of each clause from the SAT CNF (see e.g. [10]).

Now imagine there exists such a solution S, then there is no clause in the SAT CNF which needs to be satisfied
by the complement of S. The complement of S is here gained by exchanging all 0 chars by 1 and vice versa. For
instance, if S = 00110, then there is no clause in the SAT CNF which can only be satisfied by S′ = 11001. We
know this because if some SAT CNF’s clause is only satisfied by the complement of S, then S is no solution because

3For a better understanding, please look up the mentioned absent PCs in the CT example of definition 4.1.13.
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it does not satisfy all clauses of the CNF. This implies that, in a solvable SAT CNF, those Possible Clauses are
absent from the CNF which are only satisfied by the complement of any of the solutions. In the context of the
Clause Table, this means that all clauses are absent from those CT Line(s) which have an Underlying Solution equal
to the complement of any of the solutions of the SAT CNF. For this reason we see that if there’s a solution which
satisfies all clauses of the SAT CNF, there’s at least one CT Line whose clauses are all absent from the CNF and
are therefore all replaced by ’true’ within the Clause Table. For this reason the whole CT DNF becomes true and
we know the SAT CNF is solvable.

If there’s no solution that solves the SAT CNF, we need to show that there is no CT Line which contains exclusively
clauses that are absent from the CNF. This can be shown as follows: When there’s no solution existing which
satisfies the SAT CNF, then there are clauses in the SAT CNF which are satisfied by some potential solution S, and
furthermore there must be clauses in the CNF which are satisfied by the complementary solution S′. We know this
because if there would be less clauses in the SAT CNF we had the situation that the CNF is solvable, as described
in the previous paragraph. This means that there is for each of the 2n many potential solutions at least one clause
in the SAT CNF which is satisfied by that potential solution. Additionally, ’Underlying Solution’ is just an other
name for potential solution. As just said, there’s for each potential solution at least one clause in the CNF which
is satisfied by that potential solution. This means that there is for each Underlying Solution at least one clause in
the CNF which is satisfied by that Underlying Solution. Concluded, there’s in each CT Line at least one clause
in the CNF, because any CT Line contains all clauses which are satisfied by that CT Line’s Underlying Solution.
As clauses appearing in the SAT CNF are replaced by ’false’ within the Clause Table, there’s at least one ’false’ in
each CT Line and thus the whole CT DNF becomes false and we know the SAT CNF is unsolvable.

A remark concerning the idea of the Clause Table: As a help for the reader, the downloadable zip-file that contains
the implementation of the polynomial solver contains, besides the actual solver code, also the code and the Windows
and Linux binaries of a further console program which generates and displays the Clause Table DNF for a choose-
able n (literal index range) between 3 and 8. You can find the program in the directory ”Algorithm D ([...])\Tests
- not part of the actual polynomial solver\ClauseTableDisplayer\(Release\)”. That additional application is meant
to be a help for the reader of this document to better understand the structure of the Clause Table. I recommend
you to have a look at the program and run it after having read the rest of this document. For the download link of
the zip-file please see the previous topic ”History of Polynomial Algorithm”.

4.2 The Polynomial 3-SAT-Algorithm

The main idea behind the polynomial SAT-solving algorithm is to detect if all Possible Clauses of at least one CT
Line are all absent from the SAT CNF to solve. If all those Possible Clauses should be absent, the CNF is solvable,
as mentioned in observation 4.1.14. Please notice that although the Clause Table has exponentially many CT Lines,
the upcoming algorithm can evaluate it in polynomial time and space. The reason therefore is that the polynomial
algorithm regards repeating patterns, namely quadruples of clauses, as we will later see, not as often as they appear
in the exponentially-sized Clause Table.

But first, some more definitions that will be necessary to describe the working steps of the polynomial algorithm:

Definition 4.2.1 Let an Active Clause Table Line be a CT Line that consists only of Possible Clauses that are
absent from the CNF to solve, i.e. those PCs do all not appear in the CNF.

Observation 4.2.2 If there is at least one Active CT Line, the CNF is solvable.

Proof: Any Active CT Line fulfills the conditions of observation 4.1.14 and definition 4.2.1, what implies the CNF
is solvable.

Definition 4.2.3 An Active Clause Tuple shall be a tuple, i.e. an ordered list of two Possible Clauses, whereby
both of those clauses appear in an Active CT Line.
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Definition 4.2.4 We say a tuple of clauses (J,K) contains one further clause I if:

• J and K are not in conflict: J ≡ K.

• I is not in conflict with J or K: (I ≡ J) ∧ (I ≡ K).

• All 0/1 digits of I appear in J or/and K: ∀x ∈ {1, 2, ..., n} : (ix = -) ∨ (ix = jx) ∨ (ix = kx).

It is valid that (J = I), or (K = I), or (J = K = I), i.e. clauses are equal, as long as I is still contained within J
or/and K.

Example: J=000---, K=00-0-- contain e.g. I=0-00--, as well as e.g. I=-000--.

Observation 4.2.5 If some clause I is contained within a clause tuple (J,K), then I is the only clause that appears,
in I’s specific CT Column, in any CT Line including J and K.

Proof: all clauses of an arbitrarily chosen CT Line are not in conflict pair-wise. When I is contained within (J,K),
then all of I’s 0/1 digits do either appear in J , or in K, or in both. This means that any other clause Iother would
have a conflict with J or/and K, because Iother has at least one 0 where J or/and K has 1, or vice versa. Thus
any Iother different from I cannot appear in the CT Line(s) including both J and K.

Example: I=0--00- is contained within J=000---, K=---000. As soon as we negate one digit of I, there is a
conflict. Example: Iother=1--00- is not contained within J=000---, K=---000, because Iother has a conflict with
J at the first digit.

Definition 4.2.6 We say a tuple of clauses (J,K) contains two further clauses I,H when the following require-
ments are fulfilled:

• J and K are not in conflict: J ≡ K.

• I is not in conflict with J or K: (I ≡ J) ∧ (I ≡ K).

• H is not in conflict with J or K: (H ≡ J) ∧ (H ≡ K).

• I and H have exactly one conflict at a well-defined position p within I and H. The position p is in this
document counted 1-based, i.e. the range of p is {1, 2, ..., n}, whereby n is the SAT CNF’s literal index range,
respectively ’DigitNumber’ in the solver implementation. Example: I=000--- and H=-010-- have one conflict
at position p = 3.

• All 0 or/and 1 digits of I and H appear in J or/and K, except I’s and H’s conflicting 0 and 1 digits at
position p, there J and K must both have a ’-’ digit.

Examples of tuples (J,K) containing I and H:

In the first example I and H have a conflict at position p = 5, and I and H are contained within (J,K):

J=000---, K=00-0--, I=0-0-0-, H=0-0-1-

In the second example, I and H have one conflict, and have their further 0 digits at different positions. Also this
case is valid as long as I and H are, except the digits at p, fully contained within (J,K):

J=000---, K=00---0, I=00--0-, H=--0-10

You might have correctly noticed that the definition of ’contained’ is ambiguous, once one clause I is contained
within (J,K) and in the second definition two clauses I and H are contained within (J,K). Only the second case
allows placing one digit of I and one digit of H outside J and K, both at position p.
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Definition 4.2.7 We say a Clause Table Line includes a set of clauses C1, C2, ... if all those clauses appear in
the Clause Table Line.

4.2.1 Code Listing

Code Listing 4.2.8 It follows a simplified version of the original implementation (for a downloadable, compiled
and optimized version, see also the upcoming topic ”Implementation on the Internet”). The programming language
is C++. You might first have a brief look at the code and study it in detail later, after having read the explanations
subsequent to the code listing. Please notice that the full code of helper procedures appears in this document’s
appendix, in the following listing only the helper procedures’ prototypes are given.

// ***************************************************************************************

// PLEASE NOTE: C notation of mathematic operators:

// ’&&’ = AND, ’||’ = OR, ’==’ = check for equality (’=’ is an assignment),

// ’!’ = negation (true becomes false or false becomes true).

// ***************************************************************************************

// global variables used by the solver code:

int DigitNumber;

int ClauseNumber;

char* CNF;

int SAT_TYPE = 3; // 3-SAT or 2-SAT (the downloadable solver implementation can handle both)

#define DIGIT_NUMBER_MAX 15

#define POSSIBLE_CLAUSE_NUMBER_MAX 3400 // DIGIT_NUMBER_MAX^3 plus some safety

int PossibleClauseNumber;

char PossibleClauses[POSSIBLE_CLAUSE_NUMBER_MAX][DIGIT_NUMBER_MAX + 1];

// prototypes of helper functions, see this document’s appendix for complete code:

bool IsEqual(char* Clause1, char* Clause2);

bool IsEqual(int ClauseIndex1, int ClauseIndex2);

bool IsInConflict(char* Clause1, char* Clause2);

bool IsInConflict(int ClauseIndex1, int ClauseIndex2);

bool ExistsInCNF(char* Clause);

bool ExistsInCNF(int ClauseIndex);

void PossibleClauses_Create();

bool Does_ih_HaveOneConflict(char* I, char* H);

bool Does_ih_HaveOneConflict(int i, int h);

bool Does_jk_Contain_ih(char* I, char* H, char* J, char* K);

// the main part of the polynomial 3-SAT solving code:

bool DoesCNFHaveASolution(

int DigitNumberPassed,

int ClauseNumberPassed,

char* CNFPassed)

{
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// set global variables used by the helper functions

DigitNumber = DigitNumberPassed;

ClauseNumber = ClauseNumberPassed;

CNF = CNFPassed;

// treat CNFs whose ClauseTable does not have at least 3 columns specially

if (SAT_TYPE == 3 && DigitNumber == 3)

{

return

!ExistsInCNF("000") ||

!ExistsInCNF("001") ||

!ExistsInCNF("010") ||

!ExistsInCNF("011") ||

!ExistsInCNF("100") ||

!ExistsInCNF("101") ||

!ExistsInCNF("110") ||

!ExistsInCNF("111");

}

// *** PREPARATION ***

PossibleClauses_Create();

// initialize ActiveClauseTuple

static bool ActiveClauseTuple[POSSIBLE_CLAUSE_NUMBER_MAX][POSSIBLE_CLAUSE_NUMBER_MAX];

for (int j = 0; j < PossibleClauseNumber; j ++)

for (int k = 0; k < PossibleClauseNumber; k ++)

ActiveClauseTuple[j][k] = !IsInConflict(j, k) && !ExistsInCNF(j) && !ExistsInCNF(k);

// *** ENTER SOLVER MAIN LOOPS ***

bool ChangesExisting = true; // if ActiveClauseTuple[][] content has changed (a ’dirty-flag’)

while (ChangesExisting)

{

ChangesExisting = false; // reset

for (int i = 0; i < PossibleClauseNumber; i ++) // the "main-i-loop"

{

for (int h = 0; h < PossibleClauseNumber; h ++) // the "main-h-loop"

{

if ((Does_ih_HaveOneConflict(i, h)) || (i == h)) // i == h IS allowed!!!

{

for (int j = 0; j < PossibleClauseNumber; j ++) // the "main-j-loop"

{

if (IsInConflict(i, j) ||

IsInConflict(h, j))

continue;

for (int k = 0; k < PossibleClauseNumber; k ++) // the "main-k-loop"

{

if (IsInConflict(i, k) ||

IsInConflict(h, k) ||

IsInConflict(j, k))

continue;
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if ((!ActiveClauseTuple[i][j] || !ActiveClauseTuple[i][k]) &&

(!ActiveClauseTuple[h][j] || !ActiveClauseTuple[h][k]))

{

if (ActiveClauseTuple[j][k])

{

if (Does_jk_Contain_ih(

PossibleClauses[i],

PossibleClauses[h],

PossibleClauses[j],

PossibleClauses[k]))

{

ActiveClauseTuple[j][k] = false;

ChangesExisting = true;

}

}

}

}

}

}

}

}

}

// *** DETERMINE SAT OR UNSAT FROM ACTIVECLAUSETUPLE ARRAY ***

bool SAT = false; // UNSAT - CNF has no solution

for (int i = 0; i < PossibleClauseNumber; i ++)

{

for (int j = 0; j < PossibleClauseNumber; j ++)

{

if (ActiveClauseTuple[i][j])

{

// printf("still true ActiveClauseTuple: %s,%s\n", PossibleClauses[i], PossibleClauses[j]);

SAT = true; // SAT - CNF has some solution (we do not know which one)

}

}

}

// *** OPTIONALLY DO CONSISTENCY CHECKS ***

#ifdef DO_CONSISTENCY_CHECKS

// for the code of the following debugging procedure, please

// view the downloadable implementation (code not listed here

// due to limited space, and because DoConsistencyChecks() is

// not required for the actual solving process):

DoConsistencyChecks(DigitNumber, ClauseNumber, ActiveClauseTuple);

#endif

return SAT;

}
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4.2.2 Implementation Details

In this section I will give more information on key-parts of the code you just saw in the Code Listing.

The polynomial solver contains a 2-dimensional Boolean array called ActiveClauseTuple[J][K]. This array tells
if a tuple of clauses (J,K) from the (imagined) Clause Table is still in an Active CT Line, or if that tuple is known
to be exclusively within CT Lines that do all include at least one false-valued clause. Recall that a clause is trodden
as false if it appears in the SAT CNF to solve. If a clause is not present in the SAT CNF, that clause is imagined
to be true.

At the beginning of the solving process, the array ActiveClauseTuple[J][K] is initialized. Only those array
elements will be true that correspond to two clauses J,K which are not in conflict and that are both absent from
the SAT CNF. Of course, this initialization does not yet reliably tell if a clause tuple (J,K) is within an Active CT
Line, because a CT Line is already not an Active CT Line if it includes one false clause. The initialization regards
only two clauses from a CT Line at a time, and because a CT Line has always more than two clauses, it is likely
to happen that also tuples from a non-Active CT Line get an initial ActiveClauseTuple[J][K]-value of true.

The state the polynomial solver must reach is the following one: at the end of the solving process, exactly those tuples
(J,K) that appear in at least one Active CT Line must have a ’true’ ActiveClauseTuple[J][K]-value. By contrast,
those tuples (J,K) that appear only in non-Active CT Lines must have a ’false’ ActiveClauseTuple[J][K]-value.
This means that, initially, there are too many ActiveClauseTuple-values ’true’. What the polynomial solver now
does is that it regards once two and once four tuples to ’conclude’ that a third, respectively fifth tuple must appear
exclusively in non-Active CT Lines as well.

The conclusion which tuples must be in non-Active CT Lines is done according to the following two rules:

”Rule 1”: Any tuple (J,K) is disabled if there is a third clause I, whereby:

– (J,K) must contain I (see definition 4.2.4). This implies that I is not in conflict with J or K.

– Furthermore it is requested that:
(ActiveClauseTuple[I][J] = false or/and ActiveClauseTuple[I][K] = false).

”Rule 2”: Any tuple (J,K) is disabled if there is a third clause I and a fourth clause H, whereby:

– (J,K) must contain I and H (see definition 4.2.6). This implies that I is not in conflict with J or K,
and also H is not in conflict with J or K. Notice that I and H have always exactly one conflict at some
position p, as also defined in the just mentioned definition. The conflict digits (once 0 and once 1) lie
’outside’ J and K, meaning J and K both have a ’-’ char at position p.

– Furthermore it is requested that:
(ActiveClauseTuple[I][J] = false or/and ActiveClauseTuple[I][K] = false) and
(ActiveClauseTuple[H][J] = false or/and ActiveClauseTuple[H][K] = false).

These two rules are applied until all ActiveClauseTuple-values have been checked and none of them has been
changed any more. This repetition is implemented by a while-loop, which is called the ’while-ChangesExisting-
loop’. More details about this loop are to come later on.

On first sight, it is probably not clear why the repetitive usage of those two rules always leads to the final state
that only tuples from Active CT Lines are still true. But the purpose of the first rule, ”Rule 1”, can be under-
stood easily: We disable the tuple (J,K) if there is a contained I, and ActiveClauseTuple[I][J] = false or
ActiveClauseTuple[I][K] = false. What is important to realize is that if I is contained within (J,K), then
I is the only clause that appears in I’s CT Column within all CT Lines including J,K (see observation 4.2.5).
This means that if I is false, there is at least one false clause (namely I) in all CT Lines including J,K. So it is
guaranteed to be valid to set the tuple (J,K) to false.
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Figuratively one can understand ”Rule 1” like this: Take clauses J and K and write the 0/1 digits of both clauses
into a temporary third clause L. L can have, for this consideration, more than three 0/1 digits. If now a false
clause I is found whose 0/1 digits do all appear ’within’ L, then ActiveClauseTuple[J][K] is set to false by Rule
1. I is defined as appearing ’within’ L if the following condition is true: If Ix is 0 then Lx is also 0, and if Ix is 1

then Lx is also 1, for any x ∈ {1, 2, ..., n}.

Example:
J=000---, K=--000- => L=00000-

So, any of the following false I’s would set ActiveClauseTuple[J][K] := 4 false:

I ∈ {000---, 00-0--, 00--0-, 0-00--, 0-0-0-, 0--00-, -000--, -00-0-, -0-00-, --000-}

Understanding the purpose and influence of ”Rule 2” needs more detailed explanations, which will soon follow in
the upcoming Proof of Correctness. Summarized, ”Rule 2” allows setting ActiveClauseTuple[J][K] := false

through false clauses I and H which have, in contrast to the requirements of Rule 1, not all their 0 and 1 digits
’within’ J and K.

4.3 Proof of Correctness

The proof of correctness is split up into two parts. First, we’ll see that the polynomial solver does never say
’unsatisfiable’ when the CNF is satisfiable. Afterwards we examine the opposite case, i.e. we show the solver does
never detect ’satisfiable’ although the CNF is UNSAT 5.

Within the proof we’ll make use of the following linguistic terms:

Definition 4.3.1 The expression ’disabling a tuple (J,K)’ shall mean setting ActiveClauseTuple[J][K] to
false. A disabled tuple (J,K) is, by implication, a tuple of clauses J,K for which ActiveClauseTuple[J][K] is
(already) false. An enabled tuple is one whose corresponding ActiveClauseTuple value is (still) true.

4.3.1 Why Satisfiable Detection is Reliable

Observation 4.3.2 The polynomial algorithm shown in code listing 4.2.8 detects reliably when the SAT CNF to
solve is satisfiable, that means when the CNF does have a solution.

Proof: When the SAT CNF is solvable, its corresponding Clause Table has at least one CT Line that includes
exclusively true clauses.

Here’s a sketch how the Clause Table could look like in the described case:

(... ∧ ... ∧ ... ∧ ... ∧ ... )∨
(true ∧ true ∧ true ∧ true ∧ true)∨
(... ∧ ... ∧ ... ∧ ... ∧ ... )∨
...

Notice that ’...’ within the braces can be either true or false. The
size of the Clause Table depends on the dimensions of the CNF to solve.

We realize that all tuples (J,K) with J , K out of the true CT Line are initialized to ActiveClauseTuple[J][K] :=

true, because J and K are not in conflict (the property of any clause tuple from one and the same CT Line), and
are imagined to be true because they do not appear in the SAT CNF (”!ExistsInCNF(J) && !ExistsInCNF(K)”,
see code listing 4.2.8).

4’A := B’ means variable A gets assigned the value of B.
5’UNSAT’ is, in this document and the solver code, the abbreviation for ’unsatisfiable’.
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The tuple (J,K) could alternatively only be disabled if there is either one false clause I1 which is contained within
(J,K) according to definition 4.2.4. This I1 is the only clause which appears, within its specific CT Column, in the
CT Lines including (J,K), according to observation 4.2.5. Or, the second possibility to disable the tuple (J,K) is if
there are two false clauses I2 and H2 which are contained within (J,K) according to definition 4.2.6. These I2 and
H2 are the only clauses which appear, within their specific CT Column, in the CT Lines including (J,K), because
I2’s and H2’s conflict digits outside (J,K), at position p, can only be either 0 or 1.

Now we have the situation that there is at least one CT Line which includes (J,K) and whose clauses do all
not appear in the SAT CNF and thus are true. This implies that I1 is true, because I1 is the only clause
in its CT Column which appears in all CT Lines including (J,K) and thus must be true. Furthermore I2
and H2 are the only clauses in their CT Column which appear in all CT Lines including (J,K). So either
I2 or H2 is true and thus (ActiveClauseTuple[I2][J] == true and ActiveClauseTuple[I2][K] == true) or
(ActiveClauseTuple[H2][J] == true and ActiveClauseTuple[H2][K] == true), for any I2 and H2 out of
the CT Line(s) including (J,K). But we need both I2 and H2 to be false clauses, what is derivable from the
&& operator which connects the two tuple groups in the source code lines ”if ((!ActiveClauseTuple[i][j]

|| !ActiveClauseTuple[i][k]) && (!ActiveClauseTuple[h][j] || !ActiveClauseTuple[h][k]))”. There-
fore (J,K) will not be disabled.

The algorithm will finally return ’satisfiable’ as at least all ActiveClauseTuple[J][K] are true for all clauses J , K
out of the Active CT Line.

4.3.2 Why UNSAT Detection is Reliable

The initial situation of this proof is that in each CT Line, there is at least one clause stated false, because it is
existing in the SAT CNF to solve. The CT Column containing the false clause was, for each CT Line, selected
absolutely arbitrarily.

The Clause Table could look like as in the following schematic example:

(... ∧ false ∧ ... ∧ ... ∧ ... )∨
(... ∧ ... ∧ false ∧ ... ∧ ... )∨
(... ∧ ... ∧ ... ∧ false ∧ ... )∨
(false ∧ ... ∧ ... ∧ ... ∧ ... )∨
...

The false values are ’spread’ over the whole CT, the only
rule is that every CT Line includes at least one false.

Observation 4.3.3 The polynomial algorithm shown in code listing 4.2.8 detects reliably when the CNF to solve
is unsatisfiable, that means when the CNF has no solution.

Proof: The goal in this proof is to show that the polynomial solver will never say the CNF would be satisfiable
although it is in reality unsatisfiable. Please keep in mind that there is, as just told, at least one false clause in
each CT Line. Because the proof is expansive, it is subdivided into several sections, beginning with some notation
conventions, followed by the derivation of the actual proof.

4.3.2.1 General Definitions for Proof

Definition 4.3.4 An initially false clause shall be a Possible Clause that has, in the context of the Clause Table
theory, the value false because it appears in the SAT CNF to solve. An initially false clause might cause the disabling
of clause tuples from the very beginning of the polynomial solving process on, in contrast to false-switched clause
tuples which might disable further clause tuples not before having been disabled themselves.
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Definition 4.3.5 We use the notation C3 = C1 ⊕C2 to denote the overlay of two clauses C1 and C2 to a third
clause C3. This operation can be applied to any set of two clauses if these clauses are not in conflict. C3 is initially
a {-}n string into which all 0 and 1 digits of C1 and C2 are copied, each 0/1 digit to the location where it appears
in C1 respectively C2.

Examples:

0000-- = 000--- ⊕ -000--

-10000 = -100-- ⊕ ---000

111--- = 111--- ⊕ 111---

It is possible and valid that C3 might have more 0/1 digits than C1 or C2.

Definition 4.3.6 Let the notation τ(C) describe the whole set of 3-SAT clauses which have been built by selecting
exactly three 0 or/and 1 digits out of an s-SAT clause C, whereby s ≥ 3. Each possible selection appears exactly
once in τ 6.

Example:

τ(00001-) = {000---, 00-0--, 00--1-, 0-00--, 0-0-1-, 0--01-, -000--, -00-1-, -0-01-, --001-}

Definition 4.3.7 We say an Underlying Solution US contains some 3-SAT clause C if C ∈ τ(US).

Definition 4.3.8 The expression Cout = Cin + 0(Cmask,p) has the following meaning: The clause Cout is a copy
of clause Cin, with one additional 0 digit at the position where clause Cmask has its p-th ’-’ char. The same applies
to Cout = Cin + 1(Cmask,p), with the difference that one additional 1 digit is added. It is also defined that Cin
and Cout can be sets of clauses, then the described operation is used on each of the clauses from Cin.

Examples:
Cin is a single clause:

000-0- = (0-0-0- + 0(0-0-0-,1)) 0-000- = (0-0-0- + 0(0-0-0-,2))

010-0- = (0-0-0- + 1(0-0-0-,1)) 0-010- = (0-0-0- + 1(0-0-0-,2))

0-000- = (0-0-0- + 0(000---,1)) 0-0-0- = (0-0-0- + 0(000---,2))

Cin is a set of clauses:

{0-000-,0-00-0,0--0-0} = ({0-0-0-,0-0--0,0--0-0} + 0(000---,1))

Definition 4.3.9 Let S(C)out = S(C)in + 01(Cmask,p) mean that we take each clause from the input set S(C)in,
create two copies of the taken clause, and add one 0 digit at position p to the first copy and one 1 digit at position p
to the second copy. p is, specially in this definition, the p-th position where Cmask has a ’-’ char. The two resulting
clauses are added to the output set S(C)out. S(C)out has twice as many elements as S(C)in. If the elements from
S(C)in are l-SAT clauses, then the elements in S(C)out are (l+1)-SAT clauses. It is requested that the clauses in
S(C)in do all have at least one ’-’ char left that can be replaced by 0 and 1.

Examples:
{0000-,0001-} = ({000--} + 01(000--,1))

A concatenation shall also be valid:

{00000,00001,00010,00011} = (({000--} + 01(000--,1))+01(000--,2))

6tau like ’three out of’.
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Definition 4.3.10 The expression ’S(C) = all possible 0/1 combinations around a clause tuple (A,B)’
shall mean the set of clauses S(C) has been created by the repetitive usage of the +01() operator: S(C) = (((((A⊕
B) + 01(A⊕B, 1)) + 01(A⊕B, 2)) + ...) + 01(A⊕B,φ)). φ is the count of ’-’ digits within A⊕B.

Example:

{000000,100000,000001,100001} = ’all possible 0/1 combinations around (-000--,-0-00-)’

Definition 4.3.11 We define the function F(S) which takes a set S of 3-SAT clauses. F 7 returns true if any of
the clauses in S is false, meaning if at least one clause appears in the SAT CNF to solve. If there is no false clause
in S, the function F returns false.

Observation 4.3.12 We can describe ’one false clause in all CT Lines including clauses A and B’ as follows:

α =
F (τ(((((A⊕B) + 0(L, 1)) + 0(L, 2)) + ...) + 0(L, φ)))∧
F (τ(((((A⊕B) + 0(L, 1)) + 0(L, 2)) + ...) + 1(L, φ)))∧
F (τ(((((A⊕B) + 0(L, 1)) + 1(L, 2)) + ...) + 0(L, φ)))∧
F (τ(((((A⊕B) + 0(L, 1)) + 1(L, 2)) + ...) + 1(L, φ)))∧
F (τ(((((A⊕B) + 1(L, 1)) + 0(L, 2)) + ...) + 0(L, φ)))∧
F (τ(((((A⊕B) + 1(L, 1)) + 0(L, 2)) + ...) + 1(L, φ)))∧
F (τ(((((A⊕B) + 1(L, 1)) + 1(L, 2)) + ...) + 0(L, φ)))∧
F (τ(((((A⊕B) + 1(L, 1)) + 1(L, 2)) + ...) + 1(L, φ)))

L = (A⊕B), φ = number of ’-’ chars within L

Proof: the just shown formula α creates the Underlying Solution strings USx ∈ {0, 1}n of each CT Line including
A and B, by ’adding all 0/1 combinations around A and B’, as defined in definition 4.3.10. When applying the
τ operator on each of those Underlying Solution strings, we get the set of all 3-SAT clauses from the CT Line
corresponding to the current Underlying Solution. Finally, the F () function, as recently defined, checks if at least
one clause from each of those sets, i.e. from each of the regarded CT Lines, is initially false.

4.3.2.2 Tuple Disabling at Initialization Time

With the definitions of the last topic it is now possible to set up the actual proof that the polynomial solver’s
UNSAT detection is reliable, i.e. that the solver, as shown in code listing 4.2.8 and as served for download, detects
every unsolvable SAT CNF as such. If the SAT CNF to be processed is unsolvable, then absolutely all clause
tuples must be disabled by the polynomial solver. Therefore we regard a general clause tuple (J,K) and show it
gets disabled when the corresponding SAT CNF is unsolvable. ’Getting disabled’ means that at the very end of
the polynomial solving process, ActiveClauseTuple[J][K] is false. J and K can be any clauses from the set of
Possible Clauses (see definition 4.1.9) that are not in conflict with each other. We will identify four different main
possibilities to disable the tuple (J,K), ”at tuple initialization”, ”by Rule 1”, ”by Rule 2, sub case a)” and ”by
Rule 2, sub case b)”.

As first announced possibility, we realize (J,K) is disabled if either J , or K, or both are initially false clauses. This
disabling of (J,K) is done at initialization time, by the code lines:

for (int j = 0; j < PossibleClauseNumber; j ++)

for (int k = 0; k < PossibleClauseNumber; k ++)

ActiveClauseTuple[j][k] = !IsInConflict(j, k) && !ExistsInCNF(j) && !ExistsInCNF(k);

7F like ”any false clause contained?”
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Recall a clause I is seen as initially false when it does appear in the 3-SAT CNF that is to be solved.
So ”!ExistsInCNF(j)” or/and ”!ExistsInCNF(k)” is not fulfilled when J = I, or/and K = I, and
ActiveClauseTuple[J][K] will be initialized to false. (Because code snippets are cited from the Code Listing
4.2.8, they contain non-capital letters representing clauses, but j and J , as well as k and K each represent the same
clause.)

4.3.2.3 Tuple Disabling by Rule 1

If neither J nor K are initially false clauses, the tuple (J,K) can, as second possibility, be disabled by ”Rule 1”.
Rule 1 disables any clause tuple (J,K) if there is one initially false clause I contained within (J,K). Please recall
that ”I is contained within the tuple (J,K)” means that all 0 or/and 1 digits of I appear at the same location
(same digit- respectively literal index) in J , or K, or both. This has been defined in 4.2.4. It is valid to disable
any tuple (J,K) if a contained clause I is false, because then I is the only clause that appears, in I’s specific CT
Column, in any CT Line including J and K, what we know since observation 4.2.5. So we can be sure that in each
CT Line including J and K and I, there is at least one false clause, namely I. And we also said we can disable
any tuple (J,K) that appears exclusively in CT Lines that include at least one false clause, what is the case now.

Mathematically we can express ”I is contained within [e.g.] (J=000-----,K=---000--)” through:

I ∈ τ(J ⊕K)

⇔

I ∈ τ(000-----⊕ ---000--)

This means that when we have an overlay of clauses J and K to (J ⊕K), then I is equal to one clause resulting
from the usage of the τ operator on the overlay (J ⊕K).

For our example, the set of I contained in (J,K) and not equal to J or K is: τ(J ⊕K) = τ(000-----⊕ ---000--)
= {00-0----, 00--0---, 00---0--, 0-00----, 0-0-0---, 0-0--0--, 0--00---, 0--0-0--, 0---00--, -000----,
-00-0---, -00--0--, -0-00---, -0-0-0--, -0--00--, --000---, --00-0--, --0-00--}. If any of these just shown
clauses is false, because it appears in the SAT CNF to be solved, then ActiveClauseTuple[J][K] is set to false by
Rule 1.

Up to this point, we collected information what Rule 1 shall theoretically do. Now, in the following paragraphs we
will see how Rule 1 is practically implemented within the code shown in the ’Code Listing’ (4.2.8), and also in the
downloadable example implementation.

So, how does the provided code assign ActiveClaueTuple[J][K] := false when there is a contained, initially
false clause I? First, we notice that because I is an initially false clause, all ActiveClauseTuple[I][X] and all
ActiveClauseTuple[X][I] values will be initialized to false for any clause X, because either ”!ExistsInCNF(I)”
or ”!IsInConflict(I, X)” is not given. This circumstance has just been explained in the previous topic ”Tuple
Disabling at Initialization Time”.

Furthermore, within the solver implementation, as shown in code listing 4.2.8, it is allowed that I = H (I is equal
to H). Because the i- and h- main loops will point, within every complete run, exactly once to each thinkable I,H
tuple, it is for sure that the both conditions I is equal to H, and I and H are contained within (J,K) will be fulfilled
once. Then the helper function Does jk Contain ih() will return true as the current I and H are contained in
(J,K) in the way requested by 4.2.6, or, what is the currently important case, as I = H and I and H are contained
in (J,K) as requested by 4.2.4. For these equal I and H, which are contained within (J,K), we regard the crucial
excerpt from the polynomial solver’s source code (4.2.8) and see that the condition:
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if ((!ActiveClauseTuple[I][J] || !ActiveClauseTuple[I][K]) &&

(!ActiveClauseTuple[H][J] || !ActiveClauseTuple[H][K]))

{
if (Does jk Contain ih(I, H, J, K)) 8

{
ActiveClauseTuple[J][K] = false; // this code line disables tuple (J,K)

}
}

will be true. This is because (!ActiveClauseTuple[I][J] || !ActiveClauseTuple[I][K]) &&

(!ActiveClauseTuple[H(=I)][J] || !ActiveClauseTuple[H(=I)][K]) is given, due to the fact that I and
H are initially false clauses and thus any ActiveClauseTuple[I][X] and any ActiveClauseTuple[H][X] is
initialized to false for an arbitrary clause X.

Concluded, we saw that also some initially false clause I that is contained within (J,K) will disable (J,K).

4.3.2.4 Tuple Disabling by Rule 2

The following topic will give information about how the polynomial solver can decide on disabling some tuple
which does not consist of initially false clauses, and which does not completely contain one initially false clause.

The goal is the following: We will show that the polynomial solver disables any tuple (J,K) if there is at least one
initially false clause contained in each Possible Solution (an n-SAT clause) built by adding ’all 0/1 combinations
around (J,K)’.

An example shall illustrate that: if e.g. J=000----- and K=---000--, then we need to show that (J,K) is disabled
if:

(∃C1 = false ∈ τ(00000000))∧
(∃C2 = false ∈ τ(00000001))∧
(∃C3 = false ∈ τ(00000010))∧
(∃C4 = false ∈ τ(00000011))

What is very important to show is that it is ensured that the polynomial solver will disable (J,K) for any C1, C2,
C3 and C4 combination out of the τ(...) sets, because this is equivalent to allow choosing any initially false clause
from each CT Line including J and K. To prove this, let me start with a concrete example. Imagine we have, for
this consideration, the following tuple (J,K) which is to be disabled:

J = 000--

K = 000--

We suppose neither J nor K are initially false clauses. What the solver now must do is to check if there is at least
one initially false clause in each of the sets τ(0000-) and τ(0001-).

This is what the solver implementation trivially does, for the following reason: We suppose that there is an initially
false clause within τ(0000-) and an initially false clause within τ(0001-). Furthermore, we know the solver disables
(J,K) if the following condition is true:

if ((!ActiveClauseTuple[I][J] || !ActiveClauseTuple[I][K]) &&

(!ActiveClauseTuple[H][J] || !ActiveClauseTuple[H][K]))

{
if (Does jk Contain ih(I, H, J, K))

{
ActiveClauseTuple[J][K] = false; // this code line disables tuple (J,K)

}
}

8Please notice: While the function name states J and K first, those two clauses are passed as 3rd and 4th argument.
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The solver does the just shown ”if (!ActiveClauseTuple[I][J] ...)”-check for really all I and H that are
contained within (J,K), what is implemented in the way that the main-i-loop and the main-h-loop iterate through
all I and H and the function Does jk Contain ih() ’filters’ those I and H which are contained within J,K. The
definition of ’I and H contained within J,K’ allows that I has all digits within J or/and K, plus one 0 digit placed
at an arbitrary position p outside J and K, i.e. where J and K do both have a ’-’ digit. The same applies to H,
with the only difference that H is allowed to have one additional 1 digit outside J and K. This is the exact basic
assumption that there is an initially false clause F1 ∈ τ(0000-), and an initially false clause F2 ∈ τ(0001-). The
fourth digit in F1 is the additional 0 outside J and K, and the fourth digit in F2 is the additional 1 outside J and
K.

The rule used in the just shown situation, in which the polynomial solver can disable the tuple (J,K), i.e. setting
ActicaClauseTuple[J][K] := false, by using merely one contained I and H pair, is to be called ”Rule 2, sub
case a)”.

4.3.2.4.1 Practical Recursion

But, what if there is no such F1, or/and no such F2? The definition of ’J,K contains I and H’ allows placing one
additional ’0’ and one additional ’1’ only, but now, we need to figuratively place 00, 01, 10 and 11 into the two
trailing ’--’ digits of (J ⊕K) = 000--, so that we can check if there is an initially false clause in each of the sets
τ(00000), τ(00001), τ(00010) and τ(00011). But this is not implemented explicitly by neither Rule 1 nor Rule
2. So how does the solver overcome that problem?

The key is to realize that there is some kind of recursion within the tuple disabling mechanism. Let us regard again
the code excerpt from the polynomial solver code listing:

if ((!ActiveClauseTuple[I][J] || !ActiveClauseTuple[I][K]) &&

(!ActiveClauseTuple[H][J] || !ActiveClauseTuple[H][K]))

{
if (Does jk Contain ih(I, H, J, K))

{
ActiveClauseTuple[J][K] = false; // this code line disables tuple (J,K)

}
}

We see that ActiveClauseTuple[J][K] is set to false if ActiveClauseTuple[I][J] or ActiveClauseTuple[I][K],
and ActiveClauseTuple[H][J] or ActiveClauseTuple[H][K] are false.

But each of the tuples (I, J), (I,K), (H,J) and (H,K) could have been disabled in the same way as (J,K)! So
it is crucial for the understanding of the polynomial solver to examine the recursion which is hidden within the
solver’s tuple disabling mechanism. I said ’hidden’ because the polynomial solver implementation does not explicitly
implement a ’classical’ recursion in the way a code procedure calls itself, but the recursion appears as a kind of
’side-effect’, because ActiveClauseTuple-values depend from each other. For this reason, that the recursion is not
purposefully programmed but happens in practice, we want to call it the Practical Recursion. In the context of
this recursion the following definition will be important during the rest of the proof:

Definition 4.3.13 Let λ be defined as the recursion depth of the Practical Recursion, which is the count of times
we recursively examined one of the four ActiveClauseTuple variables from the following code block:

if ((!ActiveClauseTuple[I][J] || !ActiveClauseTuple[I][K]) &&

(!ActiveClauseTuple[H][J] || !ActiveClauseTuple[H][K]))

{

...

}

λ starts at 0, which means we did no recursion step yet.

20



Please recall the polynomial solver does not use recursive procedure calling but we only do a recursive examination
to prove the polynomial solver detects UNSAT correctly. So the expression ’recursion depth’ denotes the depth of
an imagined explicit recursion.

The following code excerpt shows how (J,K) can be disabled by e.g. (I, J) and (H,J), and how thereof (I, J) could
have been disabled by some further (I2, I) and (H2, I) at the next deeper recursion depth. The number 2 in I2
and H2 does here and generally have no special meaning but is just a serial number to distinguish clauses which
are named with the same letter.

Disabling of (I, J):

if ((!ActiveClauseTuple[I2][I] || !ActiveClauseTuple[I2][J]) &&

(!ActiveClauseTuple[H2][I] || !ActiveClauseTuple[H2][J]))

{
if (Does jk Contain ih(I2, H2, I, J))

{
ActiveClauseTuple[I][J] = false; // this code line disables tuple (I,J)

}
}

Then, the just false-switched tuple (I, J) causes, among some false (H,J) or/and (H,K), the disabling of (J,K):

if ((!ActiveClauseTuple[I][J] || !ActiveClauseTuple[I][K]) &&

// ^ (I,J) regarded before, see code block above...

(!ActiveClauseTuple[H][J] || !ActiveClauseTuple[H][K]))

{
if (Does jk Contain ih(I, H, J, K))

{
ActiveClauseTuple[J][K] = false; // this code line disables tuple (J,K)

}
}

Disabling (H,J) or/and (H,K) is not explained here in detail, but works analogous to the shown disabling of (I, J).

Please recall there’s no recursive procedure calling or such which would be aimed to explicitly implement the
Practical Recursion. Instead, for the just shown example, first the tuple (I, J) had to be disabled before it can
take part in the disabling of tuple (J,K). Notice the polynomial solver’s main-loops i,h,j,k are, within the while-
ChangesExisting-loop, run through completely again and again until no ActiveClauseTuple value has changed any
more. Like this it is ensured tuples can disable each other in an arbitrary order.

4.3.2.4.2 Clause Stack Notation

For the upcoming parts of the proof, a special notation will be used to visualize sets of clauses which contribute
to the disabling of some regarded tuple. This visualization is now introduced by an example: Imagine the solver
needs to decide if the following tuple (J,K) is to be disabled:

J = 000---

K = 000---

We suppose neither J nor K are initially false clauses and there is no single clause I contained within (J,K). Now,
instead of one contained I, some initially false I and some initially false H contained within (J ⊕ K) could still
disable that tuple (J ⊕K):
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I ∈ τ(0000--)
H ∈ τ(0001--)
J = 000---

K = 000---

The just shown list of clauses/tuples disabling each other shall be called the Clause Stack. When you read the
’stacked’ clauses top-down, you get the ’disabling chain’ which does finally result in the disabling of the tuple
represented by the bottom two clauses. For instance, in the just shown Clause Stack, we see some initially false I
and H would disable (J,K). If there is no such initially false clause I, we already know it is still possible that the
tuple (I, J) has been disabled by some further I2 and H2, as pointed out in the previous topic ’Practical Recursion’.
The same applies to (H,J), which could have been disabled by some initially false clauses I3 and H3. These two
cases can be visualized in form of the Clause Stack as follows:

I2 ∈ τ(00000-)
H2 ∈ τ(00001-)
I ∈ τ(0000--)
J = 000---

and:

I3 ∈ τ(00010-)
H3 ∈ τ(00011-)
H ∈ τ(0001--)
J = 000---

It is important to realize that we can examine, in this proof, the (I, J) and (H,J) branches independently. To
understand this, let’s have another look at the code which implements the disabling of (J,K):

if ((!ActiveClauseTuple[I][J] || !ActiveClauseTuple[I][K]) &&

(!ActiveClauseTuple[H][J] || !ActiveClauseTuple[H][K]))

{
if (Does jk Contain ih(I, H, J, K))

{
ActiveClauseTuple[J][K] = false; // this code line disables tuple (J,K)

}
}

We see (I, J) and (H,J) do both appear AND-ed in the same if (!ActiveClauseTuple[I][J] ...)-condition,
so they might both be required for the disabling of (J,K). But (I, J) can be disabled independently from (H,J),
because at a deeper recursion depth 9 (I, J) and (H,J) do not appear any more in one and the same code block,
but (I, J) and (H,J) do both form autonomous tuples which are in conflict. I and H are in conflict because they
have one conflict digit at some position ’p’, as defined in 4.2.6, and can be disabled by different I2, H2 and I3, H3
tuples.

There are two further properties of the Clause Stack helpful for the understanding of the rest of the proof:

• The 3rd and 4th clause from above are the ’current J and K’, that means that the tuple built out of the 3rd
and 4th clause from top will be the first one disabled if the two top-most clauses are initially false.

• Clause names (I, H, J , K, ...) shall be noted electively in front of or behind of a Clause Stack line without
changing any meaning (’I2 ∈ τ(00000-)’ means the same as ’τ(00000-) 3 I2’).

Definition 4.3.14 Let the already used Clause Stack locations be a numeric set U of indices. Each index in
U refers to a clause location u (i.e. the u-th char from left) where in at least one of the clauses of the Clause Stack
a ’d’, ’0’ or ’1’ digit has been placed.

9With ’recursion’ the Practical Recursion is meant, see previous topic 4.3.2.4.1.
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Figuratively U contains the indices of exactly those Clause Stack columns which do not entirely consist of ’-’ chars.
The ’x-th Clause Stack column’ is here defined as the set of digits at the x-th position from left within all clauses
in the Clause Stack.

4.3.2.4.3 Final Proof

With the aid of the gained knowledge about the Practical Recursion, the Clause Stack Notation, and by having
found an idea for the still open proof, namely showing that any theoretically acceptable combination of initially
false clauses is really taken on for tuple-disabling, we can now derive the final ”Why UNSAT Detection is Reliable”
proof.

This derivation shall be done using a ’half-general’ notation covering the large set of different clauses which could
be necessary to be processed by the solver. The notation, which does partially use ’d’-digits instead of ’0’ or ’1’
digits, is still easy to understand but powerful enough to represent all possible cases.

The ’d’-notation will now be introduced by an example, which is also used as the basis for the proof.

Imagine we have two disjoint J and K and need to decide if to disable this tuple:

ddd------ = J

---ddd--- = K

We define the following rules concerning the ’d’-notation:

• Each digit ’d’ could be replaced by either ’0’ or ’1’. But: the choice ’0’ or ’1’ must be equal within each
column of the Clause Stack. This is because there must be no conflict among the clauses, except eventually
the one conflict between the two top-most clauses I and H. The ’x-th Clause Stack column’ is here defined
as the set of digits at the x-th position from left within all clauses in the Clause Stack.

• The expression non-’-’ digits stands for a set D of digits which have each been chosen out of {d, 0, 1},
|D| ≥ 1.

• Each digit ’d’ can be at an arbitrary location within J and K (or further involved clauses), meaning jx or/and
kx can be ’d’ for three or more (’more’ if a clause is represented using the τ(...) notation) x ∈ {1, 2, ..., n}, and
it shall be valid to permute the digits of J and K and of all clauses that will be regarded in the following.
The only restriction for the permuting is that it is used in the same way on all participated clauses, so that
figuratively in the Clause Stack whole columns of digits are exchanged. Like this, J and K can in practice
have their non-’-’ digits anywhere, while in the following proof vicarious J and K are shown which have their
non-’-’ digits at the first six digit locations.

• The size n of the clauses in Clause Line Notation can be chosen freely as long as it is large enough to contain
all ’d’ digits. With larger clauses, the number of initially false clauses required to disable (J,K) might grow,
but their processing is always uniform to the proceeding shown in the following text passages.

By now, we preliminarily suppose J and K do not overlap, i.e. they do not share any ’d’ digits. This means if jx
is ’d’ then kx is ’-’ and vice versa, for any x ∈ {1, 2, ..., n}. n is, as always, the total length of the clauses in Clause
Line Notation, respectively the literal index range in the SAT CNF. We will see this is the worst case, if the solver
can correctly decide if such a disjoint (J,K) tuple is to be disabled, it will decide correctly for any (J,K) tuple.

The goal we must reach now to show that the polynomial solver works, is to prove the polynomial solver, as shown
in the Code Listing (4.2.8) and as served for download, does accept any set of clauses S(C) that was built by taking
exactly one initially false clause from each of the CT Lines including J and K. This is again a worst case, if we
take, from one or more CT Lines including J and K, more than one clause then this case contains as sub case the
situation where we take only one clause from each CT Line.

Now, let us examine if the polynomial solver fulfills the requested demands.
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Two requirements must be fulfilled to disable any tuple (A,B) which has not been disabled at initialization time:

R1) There must be false tuples ((I, A) or (I,B)) and ((H,A) or (H,B)), 10

R2) I and H must be contained within (A⊕B).

These two requirements are implemented in the source code of the solver (see code listing 4.2.8) at the following
locations (see code comments):

if ((!ActiveClauseTuple[I][A] || !ActiveClauseTuple[I][B]) && // check for R1

(!ActiveClauseTuple[H][A] || !ActiveClauseTuple[H][B])) // check for R1

{
// [...]

if (Does jk Contain ih(I, H, A, B)) // check for R2

{
ActiveClauseTuple[A][B] = false; // this code line disables tuple (A,B)

// [...]

}
}

There are some special notation conventions used in this proof. ’??????...’ stands for a section from a clause
in Clause Line Notation, whereby this section contains exactly two non-’-’ digits. For instance, ??????0-- could
be 00----0-- or 1--0--0-- or --11--0-- and so on. When clauses are shown on top of each other, then these
clauses represent (an excerpt from) a Clause Stack, as introduced in definition 4.3.2.4.2. (J,K) = false is a more
mathematical notation for the programming language C’s notation ActiveClauseTuple[J][K] == false. The
same applies to (J,K) resp. (A,B) and ActiveClauseTuple[J][K] resp. ActiveClauseTuple[A][B] in general,
for any clauses J and K, A and B and so on. The letters used to represent clauses can be exchanged, as long as
the exchanged letters appear in the same context. This is like in mathematic formulas in general, where variable
names are convertible.

As presented in the topic ’Practical Recursion’, to understand the working mechanisms of the polynomial solver,
we must examine the recursion which is hidden in the tuple disabling mechanism. λ (”Lambda”) has been defined
as the depth of an imagined explicit recursive examination. We will now check if all initially false clauses sufficient
to disable some base tuple (J,K) will really be taken on for disabling. We subdivide the check in several sections,
each for a special Lambda or Lambda range.

λ = 0

In the first case, λ is 0 and thus we do no Practical Recursion step. The question to resolve is if any valid I and H
is contained in (J,K).

An important question is here what does ’valid’ I and H mean. In the following topics any ’valid’ I and H and
further clauses, which must be contained in another tuple (e.g. (J,K)), are always the set of those clauses I and
H which have their non-’-’ digits either at any already used Clause Stack locations or/and at the conflict position
p. The following six Clause Stacks provide good examples, please regard them carefully. The ’valid’ I and H (and
later I2 and H2, I3 and H3, and so on) clauses are always the top two clauses.

To come back to the proof, the question to resolve is if any valid I and H is contained in (J,K). This would imply
any of those I and H would, if I and H are initially false clauses, lead to the disabling of (J,K). Let us regard a
Clause Stack visualization of the expected I, H, J , K:

??????0-- 3 I

??????1-- 3 H

ddd------ = J

---ddd--- = K

10The ’or’ which connects two tuples is not an exclusive or but can also mean and. This can be derived from the related if()-condition
in the solver’s source code, which uses the || operator, which is an inclusive or. Please see the two code lines commented with "//

check for R1" in the upcoming code excerpt.

24



R2) We see the tuple (J,K) contains any I and H.

This can be derived from the definition of ’(J,K) contains I,H’ (definition 4.2.6). (J,K) contains any
I ∈ τ(dddddd0--) and any H ∈ τ(dddddd1--) because all non-’-’ digits of I and H appear at the same
location either in J or in K or in both 11, except one ’0’ of I and one ’1’ of H. These two conflict digits lie
at some location p outside (J ⊕K).

R1) So, if (J,K) contains I and H, then (J,K) is disabled if ((I, J) or (I,K)) and ((H,J) or (H,K)) are disabled.
We derive this from the code lines commented "// check for R1". Please see excerpt of the source code of
the solver above.

This means that ((I ∈ τ(dddddd0--), J) = false or (I ∈ τ(dddddd0--),K) = false) and ((H ∈
τ(dddddd1--), J) = false or (H ∈ τ(dddddd1--),K) = false) disable (J,K).

Generally any (X,Y ) is disabled in at least one of the following two cases:

1) Either X or Y or both are initially false clauses. In this case, the ActiveClauseTuple[][] initialization
disabled (X,Y ).

2) Alternatively (X,Y ) has been disabled in a deeper Practical Recursion level, as it will be shown in the
following.

This means ((I, J) or (I,K)) and ((H,J) or (H,K)) is either disabled by any initially false I and H. Or the four
tuples have been disabled in a deeper Practical Recursion step, as it will be shown in the following λ = 1 case. It
is also possible that a mixture of those two cases appears, i.e. only I or H is an initially false clause.

λ = 1

In the following passages we examine how to disable at least one (I, J) or (I,K) if I is no initially false clause. If
I is no initially false clause, two initially false clauses I2 and H2 can disable (I, J) or (I,K).

The same applies to a 3rd and fourth initially false clause I3 and H3 which would disable (H,J) or (H,K). This
case is not shown here but works analogously to the I2 and H2 case, with the only difference I3, H3 and H got
placed a ’1’ digit at some former location p where I2, H2 and I obtained a ’0’ digit.

With false tuples ((I, J) or (I,K)) and ((H,J) or (H,K)), (J,K) would be disabled, as just explained in the λ = 0
case.

So let us examine if any initially false I2 and H2 disable (I, J) or (I,K).

I allege that effectively any I2 ∈ ???????0- and any H2 ∈ ???????1- do disable (I, J) or (I,K). This allegation
can be visualized as follows:

???????0- 3 I2 // initially false and

???????1- 3 H2 // initially false disable

τ(dddddd0--) 3 I // and

ddd------ = J

or

???????0- 3 I2 // initially false and

???????1- 3 H2 // initially false disable

τ(dddddd0--) 3 I // and

---ddd--- = K

11Non-’-’ digits can appear in both J and K if J and K overlap partially or totally. This situation will be examined later on in this
proof.
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To prove this allegation we must show the stated I and (J or K) contain any stated I2 and H2.

R2) Claim: There’s at least one tuple built out of some of the I and J or one tuple built out of some I and K
which contains I2 and H2.

Proof: We found out in the previous λ = 0 examination that either (I ∈ τ(dddddd0--), J) = false or
(I ∈ τ(dddddd0--),K) = false are required to disable (J,K).

We can be sure I2 ∈ τ(dddddd00-) and H2 ∈ τ(dddddd01-) is guaranteed to be contained within at least one
(I ∈ τ(dddddd0--), J) or at least one (I ∈ τ(dddddd0--),K). To prove this, we must realize that I2 and H2
are two 3-SAT clauses and thus consist of summarized exactly six non-’-’ digits. Of these 6 non-’-’ digits two
ones are the conflict digits at position p. This means I2 has one ’0’ at p = 8 and H2 has one ’1’ at p = 8.
The digits of p lie outside I, J and K, as defined in the definition of ’being contained’ (see definition 4.2.6).
The value ’8’ of p = 8 refers to our example, but can be different for other J and K which have their ’d’ digits
at other locations.

So overall four non-’-’ digits of I2 and H2 rest which must lie in (I ⊕J) or (I ⊕K). This is the case, because
there’s at least one I ∈ τ(dddddd0--) which contains three digits of I2 and H2. The resting one non-’-’ digit
of I2 and H2 is contained either in J or K.

For better understanding, please view a visualization of three possible cases:

dd-----0- = I2 // initially false

-d----01- = H2 // initially false

dd----0-- = I

ddd------ = J

---ddd--- = K

or

d-----00- = I2 // initially false

d---d--1- = H2 // initially false

d---d-0-- = I

ddd------ = J

---ddd--- = K

or

-d----00- = I2 // initially false

d---d--1- = H2 // initially false

d---d-0-- = I // In this example,

ddd------ = J // J contains one digit (of I2) which does not ’fit’ into I any more.

---ddd--- = K

R1) Because (I, J) contains I2 and H2, (I, J) is disabled if ((I2, I) or (I2, J)) and ((H2, I) or (H2, J)) are disabled.

This means that ((I2 ∈ τ(dddddd00-), I ∈ τ(dddddd0--)) = false or (I2 ∈ τ(dddddd00-), J) = false) and
((H2 ∈ τ(dddddd01-), I ∈ τ(dddddd0--)) = false or (H2 ∈ τ(dddddd01-), J) = false) disable (I, J).

Similarly, because (I,K) contains I2 and H2, (I,K) is disabled if ((I2, I) or (I2,K)) and ((H2, I) or (H2,K))
are disabled.

This means that ((I2 ∈ τ(dddddd00-), I ∈ τ(dddddd0--)) = false or (I2 ∈ τ(dddddd00-),K) = false) and
((H2 ∈ τ(dddddd01-), I ∈ τ(dddddd0--)) = false or (H2 ∈ τ(dddddd01-),K) = false) disable (I,K).

We see, at λ = 1 any initially false clauses I2 and H2 will disable either (I, J) or (I,K). This is because if I2
and H2 are initially false clauses, (I2, I) and (H2, I) are false and therewith also (I, J) will become false, as just
pointed out in R1).
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Furthermore, at λ = 1 any initially false clauses I3 and H3 will disable either (H,J) or (H,K). This is because
if I3 and H3 are initially false clauses, (I3, H) and (H3, H) are false and therewith also (H,J) will become false.
This case is not explained in detail but works analogous to the disabling of (I, J).

This implies, because we have a false (I, J) or (I,K) and a false (H,J) or (H,K), also (J,K) will be disabled. This
is the case because enough tuples to disable (J,K) are false, as stated in the previous topic ’λ = 0’.

We want to name the cases where more than two initially false I and H disable (J,K), i.e. all rules applied to
disable (J,K) for λ ≥ 1, ”Rule 2, sub case b)”. Later text passages might refer to the examinations made for
λ ≥ 1 using this name.

λ = 2

If there are no initially false clause I2 and no initially false clause I, it is possible that some initially false clauses
I4 and H4 disable (I2, I):

????????0 3 I4

????????1 3 H4

τ(dddddd00-) 3 I2

τ(dddddd0--) 3 I

As stated in the λ = 1 case, we need at least one (I2 ∈ τ(dddddd00-), I ∈ τ(dddddd0--)) = false. I2 and I can
be a tuple of clauses taken out of a set of clauses (τ(dddddd00-) and τ(dddddd0--)), whereby any of those tuples
can be set to false to contribute in the λ < 2 cases to finally disable (J,K). 12 So we must show that there is at
least one tuple (I2, I) which contains I4 and H4.

R2) Claim: There’s at least one tuple (I2, I) which contains I4 and H4, no matter where I4 and H4 have their
overall 4 non-’-’ digits apart from position p. Proof: This is the case because we can choose I2 and I so that
three of the four non-’-’ digits of I4 and H4 are contained by I2 and the resting one non-’-’ digit of I4 and
H4 lies in I.

R1) Concluded, because (I2, I) contains I4 and H4, (I2, I) is disabled if ((I4, I2) or (I4, I)) and ((H4, I2) or
(H4, I)) are disabled.

We suppose I4 and H4 are both initially false clauses. This means (I4, I2), (I4, I), (H4, I2) and (H4, I) have been
initialized to false. Inferred, (I2, I) gets disabled.

Eventually disabling (H2, I) works analogous with the only difference H2 has a ’1’ digit where I2 has a ’0’ digit
and some I5 and H5 would be involved according the the same scheme like I4 and H4.

If also not I4 and not H4 are initially false clauses, we must examine at least one more Practical Recursion step.
In this deeper Practical Recursion level λ > 2, the proceeding is very similar to that in level λ = 2. The case λ > 2
will be examined in the following passage.

λ > 2

At Practical Recursion depth λ = 2 we saw that I2 and I can be chosen freely from the already used Clause Stack
locations. I2 is chosen to contain up to 3 non-’-’ digits of I4 and H4, and I the resting one.

This is implemented in the solver source code as follows:

Each of the main-i,h,j,k-loops point at least once to any of the Possible Clauses. I4 is defined by the main-i-loop.
H4 is defined by the main-h-loop. I2 is defined by the main-j-loop. I is defined by the main-k-loop. As soon as the
main-j-loop and main-k-loop point to the Possible Clauses which have the content of the I2 and I that contain the
up to three resp. one non-’-’ digits of I4 and H4, the function Does jk Contain ih(I4, H4, I2, I) will return
true and the solver will eventually disable ActiveClauseTuple[j][k].

12The sets of clauses are expressed by the τ(x − SAT clause)-operator, which returns the set of 3-SAT clauses being completely
contained (according to definition 4.2.4) within the x-SAT clause.
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The disabling will happen if ActiveClauseTuple[i][j] == false or ActiveClauseTuple[i][k] == false and
ActiveClauseTuple[h][j] == false or ActiveClauseTuple[h][k] == false.

So the reason why we can here in this proof state sets of clauses is that the related main-i,h,j,k-loops will at least
once point to each clause out of those clause sets.

Now, for the following proof, a basic observation is of importance: If Jλ and Kλ is free of choice, any Iλ and Hλ

will be contained in at least one Jλ and Kλ tuple. The reason therefore is that we can choose Jλ to contain up to
three non-’-’ digits of Iλ and Hλ, and we can choose Kλ to contain the resting one non-’-’ of Iλ and Hλ. Jλ and
Kλ are ’free of choice’ does here mean these clauses can be any clauses out of the set of clauses having their non-’-’
digits at the already used Clause Stack locations. This is similar to the definition of ’valid’ I and H, as given at
the beginning of the λ = 0 topic. Furthermore, the λ within Jλ, Kλ, Iλ, Hλ and further clauses is just an index of
the current Practical Recursion level the clauses appear in. Please recall the definition of λ, 4.3.13.

The idea of this λ > 2 proof is that we show: if Jλ and Kλ are free of choice, then also Jλ+1 and Kλ+1 is free of
choice. We can use this rule recursively to show if some Jλ and Kλ is free of choice, then any Jλ+x and Kλ+x is
free of choice for x ≥ 0. This means any Iλ+x and Hλ+x will be contained within Jλ+x and Kλ+x.

So the main question is: when Jλ and Kλ is free of choice, is it also Jλ+1 and Kλ+1? To answer this question, we
must first find out how Jλ+1 and Kλ+1 are created out of the current Jλ and Kλ. Therefore we have a look at the
solver’s source code:

if ((!ActiveClauseTuple[I][J] || ... &&

// ^ the new Jλ+1

// ^ the new Kλ+1

...)

{
if (Does jk Contain ih(I, ..., J, K))

{
ActiveClauseTuple[J][K] = false;

// ^ the current Jλ
// ^ the current Kλ

}
}

We see that the code line ActiveClauseTuple[J][K] = false disables the current (J,K), which is (Jλ,Kλ). At
the next deeper Practical Recursion level, (Iλ, Jλ) could have been disabled and might contribute to the disabling
of (Jλ,Kλ). We see this because the value of ActiveClauseTuple[I][J] stands in the if()-condition which is
necessary to decide on the disabling of (Jλ,Kλ). From this we conclude the new Jλ+1 is Iλ and Kλ+1 is Jλ.

So a very important question is: which content can Iλ and therewith Jλ+1 have?

In the past topics for λ ≤ 2 we saw Iλ is always out of τ((Jλ ⊕ Kλ) + 0((Jλ ⊕ Kλ), ...)). In words, we take the
overlay of Jλ and Kλ, place a ’0’ digit at any still unused Clause Stack location and use the τ() operator thereon.
This is what the definition of ”I and H is contained within (J,K)” determines, please compare to definition 4.2.6
carefully.

So we get as Iλ all clauses which are in τ(Jλ ⊕ Kλ), plus those clauses which have a ’0’ digit at position p and
which have their resting 2 non-’-’ digits within (Jλ⊕Kλ). And this is the complete set of clauses we need, because
there are no more clauses expected as Iλ than the clauses out of the set of τ(Jλ⊕Kλ) united with the set of clauses
which have exactly one non-’-’ digit at position p and the resting two non-’-’ digits in (Jλ ⊕Kλ).

For a better understanding, the following Clause Stack visualizes all expected Kλ, Jλ = Kλ+1, and Iλ = Jλ+1:

τ({d∗}dddddddd0{-∗}) 3 Iλ = Jλ+1

τ({d∗}dddddddd-{-∗}) 3 Jλ = Kλ+1

τ({d∗}ddddddd--{-∗}) 3 Kλ
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In this visualization, the expression {d∗} stands for a number nd of ’d’ digits. nd can be chosen between 0 and
some maximum, whereby the maximum is limited by the fact we must not place more ’d’ digits than there are free
locations within the clauses. The deeper the Practical Recursion level, the higher the count of ’d’ digits represented
by {d∗} gets. The actual digits represented by ’d’ are either ’0’ or ’1’. This choice, if ’d’ represents ’0’ or ’1’,
is equal column by column for all clauses of the Clause Stack, as pointed out at the beginning of topic 4.3.2.4.3.
{-∗} represents a variable number of ’-’ digits, which are required to reach the total clause length in Clause Line
Notation. Finally, the position p is marked as underlined ’0’ digit within Iλ.

So we saw Jλ+1 = Iλ can be any clause we expect and thus Jλ+1 can be seen as ’free of choice’. Because Kλ+1 is
Jλ, we can also be sure also Kλ+1 is free of choice. This is because one of the basic assumptions of this proof was
that Jλ is given as free of choice.

Concluded, the requirements of an induction proof are fulfilled. These requirements are that the solver works as
requested for any induction step λ→ λ+ 1 if λ > 2. We also saw the solver works for the base cases λ ∈ {0, 1, 2}.
This was shown in the previous topics. Summarized we showed for any λ ≥ 0 that any initially false clauses Iλ and
Hλ are contained within at least one (Jλ,Kλ).

Further Notes

From λ ≥ 2 on the proceeding to show (Jλ,Kλ) contains (Iλ, Hλ) is always uniform. Merely the size of the τ() sets
from which the participated clauses Jλ, Kλ, Iλ, Hλ can be chosen from increases.

λ = 1 is a special case in the sense it explicitly involves J and K. This is because one non-’-’ digit of I or H might
only lie in K, not in J .

The case λ = 0 has already be examined in the section introducing ”Rule 2, sub case a)”. λ = 0 does not need a
Practical Recursion step because the clauses I,H and J,K are processed at once in the very same code block.

The assumptions of the λ > 2 case have been tested by me for contradiction using a test program. The ”Final
Proof Verification Program Two” just checks if any expected Jλ and any Iλ comes up as J resp. I during the
practical recursion the polynomial solver would do. No error has been found up to n = DigitNumber = 14. All
expected J and I were processed as having been stated by the theory of the past proof. You can try out the ”Final
Proof Verification Program Two” yourself on Windows or Linux. The program is in the zip file which contains also
the actual solver implementation, in the directory ”Algorithm D ([...])\Tests - not part of the actual polynomial
solver\FinalProofVerificationProgramTwo\(Release\)”. For the download link of the zip file please see this paper’s
topic ”History of Polynomial Algorithm”. Information about the first Final Proof Verification Program will come
later on in this document.

In the λ > 2 proof we only examined ActiveClauseTuple[I][J] from the if()-condition.
ActiveClauseTuple[H][J] can be examined analogously, with the only difference that H has a ’1’ digit at
position p where I has a ’0’ digit. We did not examine ActiveClauseTuple[I][K] or ActiveClauseTuple[H][K].
The given proof suggests ActiveClauseTuple[I][J] and ActiveClauseTuple[H][J] are sufficient to contribute
to the disabling of (J,K). And truly, all tests I did with the solver test implementation and with the Final Proof
Verification Program Two showed the solver works, at least for λ > 2, without ActiveClauseTuple[I][K] and
ActiveClauseTuple[H][K]. This was tested by commenting-out code lines which involve (I,K) or (H,K). So we
do not necessarily need to do any Kλ+1 = Kλ examination.
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Overlapping J and K

Now we know every tuple of disjoint J and K is disabled by any clause set built by selecting one initially false clause
from each CT Line including J and K. But what if J and K are not disjoint but overlap partially, or totally? For
instance:

ddd------ = J

--ddd---- = K

or

ddd------ = J

-ddd----- = K

or

ddd------ = J

d-dd----- = K

or

ddd------ = J

ddd------ = K

Will the solver correctly decide if to disable these (J,K) as well? To answer this question let’s go through the steps
again we have done for the disjoint J,K:

• For any of the overlapping J,K cases, any initially I and H will be accepted if those I and H are contained
within J,K. This is no new insight but has been proven already in the ”Tuple Disabling by Rule 2, sub case
a)” explanation.

• The only significant part that differs from the proceeding of disjoint J,K is the selection of an eventual I2
and H2. Now, we need to show that we can always select an I so that (I, J) or/and (I,K) contains any I2
and H2 combination. Let’s look at a possible example with J=ddd------ and K=-ddd-----:

?????0--- 3 I2

?????1--- 3 H2

τ(dddd0----) 3 I

ddd------ = J

or

?????0--- 3 I2

?????1--- 3 H2

τ(dddd0----) 3 I

-ddd----- = K

We see this case, and each of the other cases where J and K overlap, is even less complicated than the one of
disjoint J,K. The reason therefore is the following: The important question is if (I, J) or (I,K) can take up
all four non-’-’ digits of I2 and H2. And we already proved this can be done for disjoint J,K. Now, when
J,K overlap, I needs to take up even less digits than when J,K are disjoint, and therewith we have a sub
case of the disjoint J,K. That’s the reason why we know the less demanding ’J,K overlap’-case is processed
correctly by the polynomial solver as well.
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Final Conclusion

So we finish the last part ”Tuple Disabling by Rule 2” of the ”Why UNSAT Detection is Reliable” proof by
summarizing:

• The polynomial solver does accept any combination of initially false clauses to disable some tuple (J,K) when
there’s at least one of those initially false clauses from each of the CT Lines including J and K.

• The basic assumption of the ”Why UNSAT Detection is Reliable” proof is that there is at least one initially
false clause in every CT Line. This means that there are also initially false clauses in all of (J,K)’s CT Lines.

• So we know, under the basic assumption of this proof, a tuple (J,K) will be disabled by the polynomial solver,
for any J and K out of the set of Possible Clauses, so that absolutely no enabled tuple(s) rest.

• Concluded, because no enabled tuple rests, we know the polynomial solver will return ’UNSAT’, and thus
detects UNSAT reliably.

Why UNSAT Detection is Reliable:

I verified the main statements of this ”Final Proof” using a self-written test program. No error was found so far.
The ”Final Proof Verification Program” is located within the downloadable zip-file, in the directory ”Algorithm D
([...])\Tests - not part of the actual polynomial solver\FinalProofVerificationProgram\(Release\)”. Please see topic
”History of Polynomial Solver” for the zip-file’s download address. The ideas behind the Final Proof Verification
Program are explained in the program’s source code in form of code comments.

4.3.2.5 Examining Example Runs

As introduced in the previous topics, there are four mechanisms (initialization, Rule 1, Rule 2 sub case a), Rule
2 sub case b)) which the polynomial solver, as shown in code listing 4.2.8 and as served for download, can use
to disable some clause tuple (J,K). To clarify the requirements and internal working steps of these mechanisms,
this topic now shows four example usages, whereby the initially false clauses, clauses J and K, plus partially the
contents of other involved clauses are stated. The presented clauses do not have any connection with clauses shown
in other text passages but have been chosen randomly just to demonstrate the proceeding(s) in each of the four
sample cases.

Case 1 of 4:

• J or/and K are initially false clauses.
Example:
J = ---000--- (= initially false)

K = ------000

⇒ Initialization disables tuple (J,K).

Case 2 of 4:

• There is an initially false clause within (J,K).
Example:
I = ---0-0-0- (= initially false)

J = ---000---

K = ------000

⇒ Rule 1 disables tuple (J,K).
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Case 3 of 4:

• There are two initially false clauses with one conflict contained within (J,K).
Example:
I = --0--0-0- (= initially false)

H = --1---0-0 (= initially false)

J = ---000---

K = ------000

⇒ Rule 2, sub case a) disables tuple (J,K).

• When we examine the polynomial solver’s code and the content of the participated clause variables, we see:
if ((!ActiveClauseTuple[--0--0-0-][---000---] || !ActiveClauseTuple[--0--0-0-][------000]) &&

// ^ disabled as --0--0-0- is initially false; ^ disabled as --0--0-0- is initially false

(!ActiveClauseTuple[--1---0-0][---000---] || !ActiveClauseTuple[--1---0-0][------000]))

// ^ disabled as --1---0-0 is initially false; ^ disabled as --1---0-0 is initially false

{
if (Does jk Contain ih(

I = --0--0-0-,

H = --1---0-0,

J = ---000---,

K = ------000))

{
ActiveClauseTuple[---000---][------000] = false;

}
}

Case 4 of 4:

• There are three or more initially false clauses with at least two conflicts, the initially false clauses might not
all be contained within (J,K).
Example:
C = --0--0-0- (= initially false)

D = -01---0-- (= initially false)

E = -11-----0 (= initially false)

J = ---000---

K = ------000

Notice C,D,E and the upcoming F,G are no variable- or clause names used in the solver source code but are
used here in this topic to be able to refer to such clauses.

• First, among others, the tuple (F,G):
F = --1---0-0

G = ------000

is disabled by D and E, through Rule 2, sub case a).

• This is because
D = -01---0-- (= initially false)

E = -11-----0 (= initially false)

have one conflict at position p = 2, and the resting 0/1 digits of D and E appear within F ⊕G.
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• When we examine the polynomial solver’s code and the content of the participated clause variables, we see:
if ((!ActiveClauseTuple[-01---0--][--1---0-0] || !ActiveClauseTuple[-01---0--][------000]) &&

(!ActiveClauseTuple[-11-----0][--1---0-0] || !ActiveClauseTuple[-11-----0][------000]))

{
if (Does jk Contain ih(

D = -01---0--,

E = -11-----0,

F = --1---0-0,

G = ------000))

{
ActiveClauseTuple[--1---0-0][------000] = false;

}
}

• Until now, the regarded tuple (J,K) has not been disabled yet. Instead, the solver disabled, among others,
the tuple (F,G), which will now be used to finally disable (J,K):
J = ---000---

K = ------000

is disabled by C and (F,G), through Rule 2, sub case a).

• This is because
C = --0--0-0- (= initially false)

F = --1---0-0

have one conflict at position p = 3, and the resting digits of C and F appear within J ⊕K.

• When we examine the polynomial solver’s code and the content of the participated clause variables, we see:
if ((!ActiveClauseTuple[--0--0-0-][---000---] || !ActiveClauseTuple[--0--0-0-][------000]) &&

// ^ disabled as --0--0-0- is initially false; ^ disabled as --0--0-0- is initially false

(!ActiveClauseTuple[--1---0-0][---000---] || !ActiveClauseTuple[--1---0-0][------000]))

// ^ unimportant; ^ (F,G) disabled before, see above!

{
if (Does jk Contain ih(

C = --0--0-0-,

F = --1---0-0,

J = ---000---,

K = G = ------000))

{
ActiveClauseTuple[---000---][------000] = false;

}
}

4.4 Questions and Answers

This part of the document gives answers to three important questions that can come up when delving into the
polynomial algorithm.

4.4.1 Why While-ChangesExisting-Loop?

In the polynomial algorithm’s source code and detailed explanations given in earlier topics, you can read about a
while-loop that is iterated until no ActiveClauseTuple[][] value has changed any more. Why do we need the
such-called while-ChangesExisting-loop?
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The while-ChangesExisting-loop is required because the ActiveClauseTuple[][] value of a clause tuple (J1,K1)
could have been set to false after it influenced the ActiveClauseTuple[][] value of an other clause tuple (J2,K2).
This means we need to re-update the second tuple (J2,K2) after the first tuple (J1,K1) has been set to false.
This re-updating will be done automatically via another while-ChangesExisting-loop iteration, which is initiated
for sure by setting the Boolean flag ChangesExisting := true if any ActiveClauseTuple[][] value has been set
to false, e.g. in our example that value of (J1,K1). This mechanism is furthermore also required to have finally all
ActiveClauseTuple[][] values set to false if the CNF is UNSAT, because the polynomial solver detects SAT as
soon as any Active Clause Tuple is still true, as defined in the Code Listing and Implementation Details.

4.4.2 Why Polynomial at all?

One can question why the polynomial solver is polynomial, in what concerns time and space, at all. The answer
is the following: First, we are lucky that the count of 3-SAT Possible Clauses has a polynomial upper bound,
namely O(DigitNumber3). Secondly, it is fortune that we can regard quadruples of clauses i, h, j, k, respec-
tively their ActiveClauseTuple-values isolated, i.e. without dependencies from further clauses or data structures.
This enables us to process each quadruple once only per while-ChangesExisting-loop iteration, although those
quadruples i, h, j, k do mostly appear multiple times in the Clause Table. Finally, because there are polynomially
many ActiveClauseTuple values, definitely O(DigitNumber3×2) many, we have not more than that many while-
ChangesExisting-loop iterations and do altogether get an algorithm that can solve 3-SAT in polynomial time and
space.

4.4.3 One 6-SAT Clause instead of two 3-SAT Clauses?

Can we replace storing the two 3-SAT clauses of any Active Clause Tuple by storing one 3-to-6-SAT clause
containing all 0/1 digits of the corresponding two 3-SAT ones? In my tests this did not work as then
the solver can, for example, not distinguish any more between ActiveClauseTuple[000---][00-0--] and
ActiveClauseTuple[0-00--][000---]. Both would be Active3To6SATClause[0000--]. The problem about
this is that if e.g. ActiveClauseTuple[000---][00-0--] = true and ActiveClauseTuple[0-00--][000---] =

false, what shall Active3To6SATClause[0000--] be then? When we add additional information to know which
were the ’source 3-SAT clauses’ of the 3-to-6-SAT clause, then this is nothing more than storing the two 3-SAT
clauses directly, as done by the polynomial solver described in this paper.

4.5 Further Notes about the Polynomial Algorithm

4.5.1 Possible Clause Type Order

Notice that the order of Possible Clause Types is, in solver ’D’, as shown in the code listing 4.2.8, not important.
This means that you can permute the Possible Clauses arbitrarily, as long as you keep those Possible Clauses in
a succession (in a kind of ’block’) that have their 0/1 digits at the very same positions within the clause. My
previous Algorithm ’B’ is ’sensitive’ to the Possible Clause Type order and seems to work reliably only for the
lexicographical order. I unknowingly chose that lexicographical order and did not know that the arrangement is
crucial for the correctness of the solving result. It was the work of Mr. Prunescu who found out that Algorithm B
fails for some CNFs if you permute the order of PC Types 13. You can read about this in his paper [8]. I thank
Mr. Prunescu very much for finding out and informing me about this circumstance. Because of Mr. Prunescu’s
discovery, I made all solvers from version ’C’ on working independently from the order of the Possible Clause Types.
This was reached mainly by adding the ”while (ChangesExisting)”-loop. The current polynomial solver versions
D-1.0, D-1.1 and D-1.2 have block-wise Possible Clause shuffling implemented and were therewith tested intensively
to verify PC Type shuffling won’t obviously make the solver fail. I could not yet find out why Algorithm B works
only for special PC Type orders, but this knowledge is not required any more for the understanding of Algorithm
D, because Algorithm D can handle, as already mentioned, any PC Type order.

13Mr. Prunescu uses the expression ’Supports’ for what I call ’Possible Clause Types’.
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4.5.2 Consistency Verifications done

To verify the polynomial solver does internally really work as expected, I implemented a consistency check in the
downloadable versions D-1.0, D-1.1 and D-1.2. The following supposition was tested for contradiction: If the 3-SAT
CNF to solve is satisfiable, then at the end of the polynomial solving process one or more ActiveClauseTuple[J][K]
values are true. This means that both clauses J and K are supposed to be within one or more Active CT Lines,
i.e. Clause Table Lines that include only true clauses. So I programmed test code that collects all Active Clause
Tuples using an exponential, fail-safe algorithm. This code is located in the procedure ’DoConsistencyChecks()’.
In around one million test runs solving CNFs with around 4 to 12 literals and 1 to 120 clauses, the resting tuples
(J,K) found by the polynomial solver on the one hand and those detected by ’DoConsistencyChecks()’ on the
other hand did invariably match.

I added the verification functionality of ’DoConsistencyChecks()’ also to my older polynomial solver version ’B’
(synonymously called ’Algorithm B’, see topic 2) some month after I have published that version ’B’. The result of
the additional verification was that my polynomial solver version ’B’ did not ’cleanly’ disable exactly those tuples
which appeared in non-Active CT Lines only. But the Clause Table theory requested that exactly those tuples
shall be still enabled at the end of the polynomial solving process which appear in at least one Active CT Line.
This requirement is not always fulfilled by solver ’B’. That’s the reason why I now implemented, in polynomial
solver version ’D’ (the topic of this paper), four main-loops (i,h,j,k), where version ’B’ used three. Although
the current version ’D’ is therefore slower than version ’B’, it did always, in all test runs performed, passed the
’DoConsistencyChecks()’ test. However, although solver ’B’ kept too many tuples enabled, this only happened
when the SAT CNF to solve was really satisfiable. For this reason, solver ’B’ did never return any wrong final result
(’satisfiable’ or ’UNSAT’), exactly like the current version ’D’, which did also never fail up to the present day this
paper you are currently reading was published.

One remark: You might have noticed that the implementation of ’DoConsistencyChecks()’ contains two
arrays named ’UnderlyingSolutions[][]’ and ’NewUnderlyingSolutions[][]’ which need an amount of
memory that grows exponentially with the SAT CNF size. Also the count of iterations of the inner-most
loops within ’DoConsistencyChecks()’ might grow exponentially. Concerning this I want you to notice that
’DoConsistencyChecks()’ is called only for testing and debugging purposes, the actual polynomial solver does not
need the exponential-sized arrays.

Within this document, I made use of the ’τ -operator’ and notations like ’+01(Cmask, p)’. Because this more
mathematical notation deviates from the way the (original) polynomial solver is implemented I created another
polynomial solver, the ’Alternative Polynomial Solver’. This alternative version uses Possible Clause char
strings instead of indices, and does an explicit placing of 0 and 1 digits, as well as applying the τ operator on those
Possible Clause char strings. The purpose of this alternative solver is to be able to better test the correctness of the
mathematical notation with a lower probability that there were faults made when ’converting’ the mathematical
notation into the solver implementation. You can find the Alternative Polynomial Solver in the downloadable zip-
file, in the directory ”Algorithm D (newest version - never failed in tests)\Tests - not part of the actual polynomial
solver\AlternativePolynomialSolver\(Release\)”. The Alternative Polynomial Solver is derived from the original
polynomial solver and can therefore also be used and re-compiled on Linux, like the original version.

It might finally be good to know that most errors I experienced during the development of the polynomial 3-SAT
solving algorithm appeared when solving SAT CNFs with n ≥ 9 14. That means if you want to test self-made
variations of the polynomial algorithm, you should make it solve SAT CNFs which are not too small, because the
larger the CNFs, the higher seems the probability that ’DoConsistencyChecks()’ finds inconsistencies, or even
wrong results (solvable/UNSAT) are returned. Of course the CPU time required to solve bigger CNFs grows rapidly,
so n = 9 or n = 10 turned out to be a good compromise.

14Please note: Errors appeared during development only, the final solver, as described in this paper and as served for download did
never return a wrong result and ’DoConsistencyChecks()’ did never find any inconsistent, i.e. unexpected solver state.
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4.5.3 Possible Optimizations

There are options to speed up the polynomial solver code shown in code listing 4.2.8.

First, we can pre-compute the results of repetitive condition checks and store them in Boolean arrays. These checks
are if two Possible Clauses are in conflict (IsInConflict(int ClauseIndex1, int ClauseIndex2)) and if a Possi-
ble Clause appears in the current SAT CNF to solve (ExistsInCNF(int ClauseIndex)). The pre-computing must
be done, for IsInConflict(), initially and if the CNF dimensions changed. The return values of ExistsInCNF()

must be once stored in an array each time a new CNF is to be solved. As the count of Possible Clauses grows
polynomially with the CNF dimensions, we are able to do the pre-computing in a reasonable amount of time and
space.

Secondly, we can exclude (J,K) pairs whose ActiveClauseTuple[J][K] value is false. As you can see in the Code
Listing 4.2.8, the inner J and K loops are always run through from 0 to PossibleClauseNumber−1. It is probable
that many of those loop iterations are surplus, as either ActiveClauseTuple[J][K] is already false, or J and K are
in conflict. So we can store a list for each J , which K need to be processed at all. This list is, in the downloadable
implementation, called kInActiveClauseTuple[][]. For further details you might want to view the source code
of the optimized solver, located within the zip-file mentioned in the topic ”History of the Polynomial Solver”.

Thirdly, the following idea can be used to avoid unnecessary j/k loop iterations: It might happen that, for defined
I and H combinations, there are no more (J,K) tuples left at all, later on in the solving process. This is the case as
soon as all ActiveClauseTuple[J][K] belonging to some I and H have been disabled. So it is a good idea to not
start iterating the J and K loops at all. In the optimized solver, this mechanism is implemented using the array
ih HasNojk[I][H].

4.6 Complexity

Observation 4.6.1 The Polynomial 3-SAT-Solving Algorithm shown in Code Listing 4.2.8 has a worst-case com-
plexity of maximal O(n18), whereby n is the SAT CNF’s literal index range.

Proof: There are PCNum = 23 ×
(
n
3

)
= O(n3) different Possible Clauses. Although

(
n
3

)
can be calculated as

n!
(n−3)!3! , which uses a factorial function, we can also gain

(
n
3

)
by using three nested loop, each doing maximal n

iterations. Three nested loops, each running from 0 to n− 1, have a complexity of O(n3).

As you can see in the Code Listing earlier on, there are the four nested loops i, h, j and k. We realize they do all maxi-
mal PCNum many iterations. The block of loops i, h, j, k is repeated, within the while-ChangesExisting-loop, max-
imal PCNum×PCNum times, as with each repetition it is guaranteed to set at least one ActiveClauseTuple[][]
element to false.

If any Possible Clauses are in conflict with each other and if a Possible Clause appears in the SAT CNF to solve
can be pre-computed in O(PCNum2 × n) respectively O(PCNum × a × n), whereby a is the number of clauses
the SAT CNF consists of. n comes from the fact that we must, in the worst-case, loop though all n 0/1/- digits
of the clauses to decide if the clauses are in conflict or within the SAT CNF. The pre-computing is faster as,
and independent from the polynomial solver’s main work (the i/h/j/k loops), so the pre-computing needn’t to be
regarded in the final complexity declaration. Also if a clause tuple (j, k) contains some second tuple (i, h) could be
pre-computed in O(PCNum4 × n). Here O(PCNum4) is the iteration-complexity of the four loops i, h, j, k and
O(n) is the loop that iterates through the digits of I,H, J,K to compare single clause digits (see implementation
of e.g. Does jk Contain ih() for details).

The Polynomial Solver located in the directory ”Algorithm D (newest version - never failed in tests)\Solver
Application\(Release\)” within the downloadable zip-file has the first two of the three mentioned pre-computations
implemented. The third computation if (j, k) contains (i, h) is done in real time to save memory (RAM). When
mentioning the complexity of the polynomial algorithm, I will always assume the complexity of the fully-optimized
variant, i.e. the implementation that does all three pre-computations.
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Summarized, we have to multiply the run-time complexities of i, h, j, k, ActiveClauseTuple[][], so we get:
O((n3)× (n3)× (n3)× (n3)× (n3)× (n3)) = O(n18).

Please notice: the complexity just calculated is a theoretical worst case in which we assume only one
ActiveClauseTuple[][] value is changed per while-ChangesExisting-loop iteration. But practically, many ar-
ray values are set to false within each while-iteration. In all tests I did the while-loop was not iterated more than
two to three times. This would mean we have a practical complexity of O(n12). Nevertheless, as I have no proof
for this yet, I will cite the polynomial solver’s complexity as calculated in the worst-case scenario (O(n18)), which
is the correct upper bound for sure.

5 Implementation on the Internet

I have implemented the algorithm explained in this document as C++ console program. This program allows to
’invent’ random 2- and 3-SAT CNFs which are first checked for solvability (’is there a solution?’) using the brute-
force, exponential way, and then by the polynomial algorithm. This can be done in a successive mass test that
checks up to 100 million CNFs, without requiring user action in the meantime. If the two results of the exponential
versus the polynomial solver should not be equal for any CNF, the program stops and the user is informed instantly
via an error message.

The implementation has been done by me using Visual Studio 2005. This means the program is designed to run
on any newer Microsoft Windows operating system. Besides Windows, the solver will also work on (most) Linux
systems. I could successfully compile and run solver ’D’ on Ubuntu 14.04 LTS. This is possible due to ”#ifdef
WIN32 ... #else ... #endif” branches within the code. Instructions about how to compile are shipped within the

zip-file containing the solver code.

The download URL of this document, the implementation of the described polynomial SAT-solving
algorithm, and some more extras is given in the earlier topic ”History of Polynomial Algorithm”
(see section 2).

An optimized variation of Algorithm D, as described in this document’s section ’The Polynomial 3-SAT-Algorithm’,
has been tested by me in form of the mentioned, downloadable console program. Around one million random CNFs
of different sizes (mainly literal index ranges from 4 to 12, clause counts from 1 to 120) have been processed. No
error was detected, as of this writing.

Within the downloadable zip-file, which contains the just mentioned optimized Algorithm D, there are also the
original descriptions and implementations of the older Algorithms B and C, which were published by me earlier.
Some third-party links in the Internet may still refer to Algorithm B or C, that’s why you can find them in the
zip-file, too.

My recommendation is to first view and try out all material related to Algorithm D, as this is the newest and best
one. Algorithm B might be of interest to you if having read Mr. Prunescu’s comment ([8]). Algorithm A should be
ignored as it is faulty and of too little quality. Algorithm C contains an error and is therefore useless.

6 Summary

This document introduced and explained a relatively simple algorithm that decides in polynomial time and space
if any given 3-SAT CNF is solvable or not. An Internet link to a test implementation has been given as well. If the
algorithm should be correct, it solved the P-NP-Problem by proving P is equal to NP.
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A Appendix

Here is the remaining code announced in the topic ’Code Listing’ (4.2.8). When you copy the code from the Code
Listing to a .cpp file and add the following second part of the code behind, you get the (unoptimized) polynomial
solver. To use the solver, call the function DoesCNFHaveASolution(DigitNumber, ClauseNumber, CNF) and check
its return value; if the return value is true, the CNF is solvable, if the return value is false, the CNF has no solution.
The code to generate SAT CNFs respectively read SAT CNFs from files can be taken from my downloadable sample
implementation, or you program it yourself. Notice the polynomial solver does not output a ’model’ (i.e. a solution
string ∈ {0, 1}DigitNumber), but decides only if the CNF is solvable or not. CNF has to be a char string with all
clauses of the SAT CNF in a succession, in my Clause Line Notation. This implies the CNF string has exactly
DigitNumber * ClauseNumber chars, whereby each char is out of {0,1,-}. The following code, combined with
the polynomial solver’s main function DoesCNFHaveASolution(), has been tested exactly like listed, so it should
work. If you have still problems, you can e-mail me. Notice that there is an optimized, already compiled version
downloadable, as mentioned in this paper’s topic ”Implementation on the Internet”.
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bool IsEqual(char* Clause1, char* Clause2)

{

// This function checks if the two char strings are identical.

for (int m = 0; m < DigitNumber; m ++)

if ((Clause1[m] != Clause2[m]))

return false;

return true;

}

bool IsEqual(int ClauseIndex1, int ClauseIndex2)

{

return IsEqual(PossibleClauses[ClauseIndex1], PossibleClauses[ClauseIndex2]);

}

bool IsInConflict(char* Clause1, char* Clause2)

{

// IsInConflict() checks if two clauses are in conflict.

// Two clauses are in conflict if there’s ’0’ at some position

// in Clause1 where there’s ’1’ in Clause2 (or vice versa).

//

// For example, it is in conflict:

// "0-0-" and "1-0-".

//

// Not in conflict are for instance:

// "0-0-" and "-00-", or

// "0-0-" and "-0-0", or

// "0-0-" and "-10-".

for (int m = 0; m < DigitNumber; m ++)

if ((Clause1[m] == ’0’ && Clause2[m] == ’1’) ||

(Clause1[m] == ’1’ && Clause2[m] == ’0’))

return true;

return false;

}

bool IsInConflict(int ClauseIndex1, int ClauseIndex2)

{

return IsInConflict(PossibleClauses[ClauseIndex1], PossibleClauses[ClauseIndex2]);

}

bool ExistsInCNF(char* Clause)

{

// Returns true if Clause appears in the CNF to solve.

// Makes use of the global variables ClauseNumber,

// DigitNumber and CNF.

for (int i = 0; i < ClauseNumber; i ++)

if (IsEqual(Clause, &CNF[i * DigitNumber]))

return true;

return false;

}

bool ExistsInCNF(int ClauseIndex)

{

return ExistsInCNF(PossibleClauses[ClauseIndex]);
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}

void PossibleClauses_Create()

{

// Fills the array PossibleClauses[][] and sets PossibleClauseNumber.

// Those variables are global; the procedure accesses further global

// variables, namely SAT_TYPE and DigitNumber.

PossibleClauseNumber = 0;

if (SAT_TYPE == 3)

{

// NOTE: if DigitNumber == 4, the PossibleClauses for 3-SAT are:

// 000-

// 001-

// 010-

// 011-

// 100-

// 101-

// 110-

// 111-

// 00-0

// 00-1

// 01-0

// 01-1

// 10-0

// 10-1

// 11-0

// 11-1

// 0-00

// 0-01

// 0-10

// 0-11

// 1-00

// 1-01

// 1-10

// 1-11

// -000

// -001

// -010

// -011

// -100

// -101

// -110

// -111

// PossibleClauseNumber = (4 ’blocks (i.e. Clause Types)’ * 8 ’0/1 combinations’) = 32

// position of first ’0’ or ’1’ digit in Possible Clause:

for (int D1 = 0; D1 < DigitNumber - 2; D1 ++)

{

// position of second ’0’ or ’1’ digit in Possible Clause:

for (int D2 = D1 + 1; D2 < DigitNumber - 1; D2 ++)

{

// position of third ’0’ or ’1’ digit in Possible Clause:

for (int D3 = D2 + 1; D3 < DigitNumber; D3 ++)

{
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for (int C = 0; C < 8; C ++) // 000, 001, 010, 011, 100, 101, 110, 111

{

// We arrive here O(DigitNumber^3) times!

// So there are O(DigitNumber^3) PossibleClauses!

for (int m = 0; m < DigitNumber; m ++)

PossibleClauses[PossibleClauseNumber][m] = ’-’;

PossibleClauses[PossibleClauseNumber][D1] = (C & 4 ? ’1’ : ’0’);

PossibleClauses[PossibleClauseNumber][D2] = (C & 2 ? ’1’ : ’0’);

PossibleClauses[PossibleClauseNumber][D3] = (C & 1 ? ’1’ : ’0’);

PossibleClauses[PossibleClauseNumber][DigitNumber] = ’\0’;

if (PossibleClauseNumber >= POSSIBLE_CLAUSE_NUMBER_MAX)

{ // if this happens, try to increase POSSIBLE_CLAUSE_NUMBER_MAX and re-compile

printf("Warning: PossibleClauseNumber too large in ");

printf("PossibleClauses_Create() !");

getchar();

}

PossibleClauseNumber ++;

}

}

}

}

}

}

bool Does_ih_HaveOneConflict(char* I, char* H)

{

// Returns true if clause I has ONCE some 0 digit where

// clause H has a 1, or vice versa. If I and H have two

// or more conflicts, the procedure returns false. If I

// and H have no conflict, false is returned as well.

int ConflictPos = -1; // the ’p’ position; -1 means not found

for (int m = 0; m < DigitNumber; m ++)

{

if ((I[m] == ’0’ && H[m] == ’1’) ||

(I[m] == ’1’ && H[m] == ’0’))

{

if (ConflictPos == -1)

ConflictPos = m;

else

return false;

}

}

return (ConflictPos > -1); // if ConflictPos set, then one conflict was found

}

bool Does_ih_HaveOneConflict(int i, int h)

{

return Does_ih_HaveOneConflict(PossibleClauses[i], PossibleClauses[h]);

}
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bool Does_jk_Contain_ih(char* I, char* H, char* J, char* K)

{

int ConflictPos = -1; // the ’p’ position

for (int m = 0; m < DigitNumber; m ++)

if ((I[m] == ’0’ && H[m] == ’1’) ||

(I[m] == ’1’ && H[m] == ’0’))

if (ConflictPos == -1)

ConflictPos = m;

else

return false;

bool ICoveredHere[DIGIT_NUMBER_MAX];

for (int m = 0; m < DigitNumber; m ++)

ICoveredHere[m] = false; // initialize

for (int m = 0; m < DigitNumber; m ++)

if (J[m] != ’-’)

ICoveredHere[m] = true;

for (int m = 0; m < DigitNumber; m ++)

if (K[m] != ’-’)

ICoveredHere[m] = true;

for (int m = 0; m < DigitNumber; m ++)

if (I[m] != ’-’ && ICoveredHere[m] == false)

if (m != ConflictPos)

return false;

bool HCoveredHere[DIGIT_NUMBER_MAX];

for (int m = 0; m < DigitNumber; m ++)

HCoveredHere[m] = false; // initialize

for (int m = 0; m < DigitNumber; m ++)

if (J[m] != ’-’)

HCoveredHere[m] = true;

for (int m = 0; m < DigitNumber; m ++)

if (K[m] != ’-’)

HCoveredHere[m] = true;

for (int m = 0; m < DigitNumber; m ++)

if (H[m] != ’-’ && HCoveredHere[m] == false)

if (m != ConflictPos)

return false;

return true;

}

[End of document ’Polynomial Exact-3-SAT-Solving Algorithm’.]

42


	Introduction
	History of Polynomial Algorithm
	3-SAT: The Problem to Solve
	Main Algorithm
	General Definitions
	The Polynomial 3-SAT-Algorithm
	Code Listing
	Implementation Details

	Proof of Correctness
	Why Satisfiable Detection is Reliable
	Why UNSAT Detection is Reliable
	General Definitions for Proof
	Tuple Disabling at Initialization Time
	Tuple Disabling by Rule 1
	Tuple Disabling by Rule 2
	Practical Recursion
	Clause Stack Notation
	Final Proof

	Examining Example Runs


	Questions and Answers
	Why While-ChangesExisting-Loop?
	Why Polynomial at all?
	One 6-SAT Clause instead of two 3-SAT Clauses?

	Further Notes about the Polynomial Algorithm
	Possible Clause Type Order
	Consistency Verifications done
	Possible Optimizations

	Complexity

	Implementation on the Internet
	Summary
	Acknowledgments
	Appendix

